Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4253))

  • 1227 Accesses

Abstract

A model theory of fuzzy propositional logic is considered. The basic frame for fuzzy propositional logics are Zadeh-algebras, i.e., special quasi-Boolean algebras, where valuation functions are universes of these algebras. There are two levels of truth-values, numerical (usually the unit interval[0,1], or in general, a lattice L) and linguistic. Linguistic truth-values are fuzzy subsets of the set of numerical truth-values. Fuzzy model is defined based on numerical truth-values, i.e. it is the set of designated truth-values. Its linguistic label is true. Truth conditions and the concepts validity, satisfiability, refutability, and invalidity are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kortelainen, J.: On relationship betweem modified sets, topological spaces and rough sets. In: Fuzzy Sets and Systems, vol. 61, pp. 91–95. North-Holland, Amsterdam (1994)

    Google Scholar 

  2. Kortelainen, J.: A Topological Approach to Fuzzy Sets, Acta Universitatis Lappeenrantaensis 90 (Doctoral thesis) (1999)

    Google Scholar 

  3. Mattila, J.K.: On modifier logic. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for Management of Uncertainty. John Wiley & Sons, Inc., New York (1992)

    Google Scholar 

  4. Mattila, J.K.: Aristotelian Tradition of Science and Fuzzy Revolution. In: Proceedings of International Conference on Fuzzy Systems (2004) (invited) IEEE Catalog No. 04CH37542C, ISBN: 0-7803-8354-0

    Google Scholar 

  5. Mattila, J.K.: On Simple Modifiers, Zadeh-Algebras and Modifier Algebras. Research Report 92, Lappeenranta University of Technology, Department of Information Technology, Lappeenranta (2004), ISBN 951-764-939-8, ISSN 0783-8069

    Google Scholar 

  6. Mattila, J.K.: Zadeh-Algebras as a Syntactical Approach to Fuzzy Sets. In: De Baets, De Caluwe, De Tré, Fodor, Kacprzyk, Zadrożny (eds.) Current Issues in Data and Knowledge Engineering, Problemy Współczesnej Nauki Teoria I Zastosowania, Informatyka, Akademicka Oficyna Wydawnicza EXIT, Warszawa, pp. 343–349 (2004); Selected papers presented at EUROFUSE 2004, Warszawa, Poland, September 22-25 (2004), ISBN 83-87674-71-0

    Google Scholar 

  7. Mattila, J.K.: Modifiers based on some t-norms in fuzzy logic. Soft Computing 8(10) (2004); DOI 10.1007/S00500-003-0323-X. Published online: September 23, 2003. ISSN: 1432-7643 (Paper) 2004, ISSN: 1433-7479 (Online) (2003)

    Google Scholar 

  8. Mattila, J.K.: On Łukasiewicz Modifier Logic. Journal of Advanced Computational Intelligence and Intelligent Informatics 9(5) (2005)

    Google Scholar 

  9. Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to Systems Analysis, Birkhäuser (1975)

    Google Scholar 

  10. Rasiowa, H.: An Algebraic Approach to non-classical Logics. North-Holland, Amsterdam (1974)

    MATH  Google Scholar 

  11. Rescher, N.: Many-valued Logic. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  12. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & HALL/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  13. Zadeh, L.A.: Fuzzy Sets. Information and Control 8 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mattila, J.K. (2006). On Models in Fuzzy Propositional Logic. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893011_46

Download citation

  • DOI: https://doi.org/10.1007/11893011_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46542-3

  • Online ISBN: 978-3-540-46544-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics