Abstract
A model theory of fuzzy propositional logic is considered. The basic frame for fuzzy propositional logics are Zadeh-algebras, i.e., special quasi-Boolean algebras, where valuation functions are universes of these algebras. There are two levels of truth-values, numerical (usually the unit interval[0,1], or in general, a lattice L) and linguistic. Linguistic truth-values are fuzzy subsets of the set of numerical truth-values. Fuzzy model is defined based on numerical truth-values, i.e. it is the set of designated truth-values. Its linguistic label is true. Truth conditions and the concepts validity, satisfiability, refutability, and invalidity are considered.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kortelainen, J.: On relationship betweem modified sets, topological spaces and rough sets. In: Fuzzy Sets and Systems, vol. 61, pp. 91–95. North-Holland, Amsterdam (1994)
Kortelainen, J.: A Topological Approach to Fuzzy Sets, Acta Universitatis Lappeenrantaensis 90 (Doctoral thesis) (1999)
Mattila, J.K.: On modifier logic. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for Management of Uncertainty. John Wiley & Sons, Inc., New York (1992)
Mattila, J.K.: Aristotelian Tradition of Science and Fuzzy Revolution. In: Proceedings of International Conference on Fuzzy Systems (2004) (invited) IEEE Catalog No. 04CH37542C, ISBN: 0-7803-8354-0
Mattila, J.K.: On Simple Modifiers, Zadeh-Algebras and Modifier Algebras. Research Report 92, Lappeenranta University of Technology, Department of Information Technology, Lappeenranta (2004), ISBN 951-764-939-8, ISSN 0783-8069
Mattila, J.K.: Zadeh-Algebras as a Syntactical Approach to Fuzzy Sets. In: De Baets, De Caluwe, De Tré, Fodor, Kacprzyk, Zadrożny (eds.) Current Issues in Data and Knowledge Engineering, Problemy Współczesnej Nauki Teoria I Zastosowania, Informatyka, Akademicka Oficyna Wydawnicza EXIT, Warszawa, pp. 343–349 (2004); Selected papers presented at EUROFUSE 2004, Warszawa, Poland, September 22-25 (2004), ISBN 83-87674-71-0
Mattila, J.K.: Modifiers based on some t-norms in fuzzy logic. Soft Computing 8(10) (2004); DOI 10.1007/S00500-003-0323-X. Published online: September 23, 2003. ISSN: 1432-7643 (Paper) 2004, ISSN: 1433-7479 (Online) (2003)
Mattila, J.K.: On Łukasiewicz Modifier Logic. Journal of Advanced Computational Intelligence and Intelligent Informatics 9(5) (2005)
Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to Systems Analysis, Birkhäuser (1975)
Rasiowa, H.: An Algebraic Approach to non-classical Logics. North-Holland, Amsterdam (1974)
Rescher, N.: Many-valued Logic. McGraw-Hill, New York (1969)
Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & HALL/CRC, Boca Raton (2000)
Zadeh, L.A.: Fuzzy Sets. Information and Control 8 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mattila, J.K. (2006). On Models in Fuzzy Propositional Logic. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2006. Lecture Notes in Computer Science(), vol 4253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893011_46
Download citation
DOI: https://doi.org/10.1007/11893011_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46542-3
Online ISBN: 978-3-540-46544-7
eBook Packages: Computer ScienceComputer Science (R0)