Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Method for Multiple Spike Train Analysis Based on Information Discrepancy

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

  • 1479 Accesses

Abstract

Simultaneous recording of multiple spike trains from population of neurons provides the possibility for understanding how neurons work together in response to various stimulations. But currently method is still lacking for researchers to perform multiple spike train data analysis and those existing techniques either allow people to analyze pair-wise neuronal activities only or are seriously subject to the selection of parameters. In this paper, a new measurement of information discrepancy, which is based on the comparisons of subsequence distributions, is applied to deal with a group of spike trains (n > 2) and analyze the synchronization pattern among the neurons, where the analytical result mostly depends on the experimental data and is affected little by subjective interference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nirenberg, S., Latham, P.E.: Population Coding in the Retina. Current. Opinion in Neurobiology 8(4), 488–493 (1998)

    Article  Google Scholar 

  2. Petersen, R.S., Panzeri, S., Diamond, M.E.: Population Coding in Somatosensory Cortex. Current. Opinion in Neurobiology 12(4), 441–447 (2002)

    Article  Google Scholar 

  3. Meister, M., Pine, J., Baylor, D.A.: Multi-neuronal Signals from the Retina: Acquisition and Analysis. J. Neurosci. Methods 51, 95–106 (1994)

    Article  Google Scholar 

  4. Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple Neural Spike Train Data Analysis: State-of-the-Art and Future Challenges. Nature Neuroscience 7(5), 456–461 (2004)

    Article  Google Scholar 

  5. Mastronarde, D.N.: Interactions Between Ganglion Cells in Cat Retina. J. Neurophysiol. 49(2), 350–365 (1983)

    Google Scholar 

  6. Aertsen, A.M., Gerstein, G.L., Habib, M.K., Palm, G.: Dynamics of Neuronal Firing Correlation: Modulation of “Effective Connectivity”. J. Neurophysiol. 61(5), 900–917 (1989)

    Google Scholar 

  7. Konig, P.: A Method for the Quantification of Synchrony and Oscillatory Properties of Neuronal Activity. J. Neurosci. Methods 54, 31–37 (1994)

    Article  Google Scholar 

  8. Gerstein, G.L., Aertsen, A.M.: Representation of Cooperative Firing Activity among Simultaneously Recorded Neurons. J. Neurophysiol. 54(6), 1513–1528 (1985)

    Google Scholar 

  9. Schnitzer, M.J., Meister, M.: Multineuronal Firing Patterns in the Signal from Eye to Brain. Neuron 37, 499–511 (2003)

    Article  Google Scholar 

  10. Fang, W.W.: Disagreement Degree of Multi-person Judgements in an Additive Structure. Mathemetical Social Sciences 28, 85–111 (1994)

    Article  MATH  Google Scholar 

  11. Fang, W.W., Roberts, F.S., Ma, Z.R.: A Measure of Discrepancy of Multiple Sequences. Information Science 137, 75–102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, A.H., Zhou, Y., Gong, H.Q., Liang, P.J.: Firing Rates and Dynamic Correlated Activities of Ganglion Cells Both Contribute to Retinal Information Processing. Brain Res. 1017, 13–20 (2004)

    Article  Google Scholar 

  13. Zhang, P.M., Wu, J.Y., Zhou, Y., Liang, P.J., Yuan, J.Q.: Spike Sorting Based on Automatic Template Reconstruction with A Partial Solution to the Overlapping Problem. J. Neurosci. Methods 135(1-2), 55–65 (2004)

    Article  Google Scholar 

  14. Wang, G.L., Zhou, Y., Chen, A.H., Zhang, P.M., Liang, P.J.: A RobustMethod for Spike Sorting with Automatic Overlap Decomposition. IEEE Trans. Biomed. Eng. 53(6), 1195–1198 (2006)

    Article  Google Scholar 

  15. Szczepanski, J., Amigo, J.M., Wajnryb, E., Sanchez-Vives, M.V.: Application of Lempel-ziv Complexity to the Analysis of Neural Discharges. Network: Comput. Neural Syst. 14, 335–350 (2003)

    Article  Google Scholar 

  16. Li, W., Fang, W.W., Ling, L.J., Wang, J.H., Xuan, Z., Chen, R.S.: Phylogeny Based on Whole Genome as Inferred from Complete Information Set Analysis. Journal of Biological Physics 28, 439–447 (2002)

    Article  Google Scholar 

  17. Fang, W.W.: The Characterization of A Measure of Information Discrepancy. Information Sciences 125, 207–232 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, GL., Liu, X., Zhang, PM., Liang, PJ. (2006). A New Method for Multiple Spike Train Analysis Based on Information Discrepancy. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_4

Download citation

  • DOI: https://doi.org/10.1007/11893028_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics