Abstract
Analog neural systems that can automatically find the minimum value of the outputs of unknown analog systems, described by convex functions, are studied. When information about derivative or gradient are not used, these systems are called analog nonderivative optimizers. An electronic circuit for the analog neural nonderivative optimizer proposed by Teixeira and Żak, and its simulation with software PSPICE, is presented. With the simulation results and hardware implementation of the system, the validity of the proposed optimizer can be verified. These results are original, from the best of the authors knowledge.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Korovin, S., Utkin, V.I.: Using sliding modes in static optimization and nonlinear programming. Automatica 10, 525–532 (1974)
Teixeira, M.C.M., Żak, S.H.: Analog nonderivative optimizers. In: American Control Conference - ACC, Albuquerque, New, Mexico, USA, pp. 3592–3596 (1997)
Teixeira, M.C.M., Żak, S.H.: Analog neural nonderivative optimizers. IEEE Transactions on Neural Networks 9(4), 629–638 (1998)
Stout, D.F.: Handbook of Operational Amplifier Circuit Design. M. Kaufman, McGraw-Hill, New York (1976)
Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. John Wiley, Chichester (1993)
Will, A.B.: Intelligent Vehicle Steering and Braking Control Systems. PhD thesis, School of Electrical Engineering, Purdue University, West Lafayette, IN (1997)
Żak, S.H., Will, A.B.: Sliding mode wheel slip controller for an antilock braking system. International Journal of Vehicle 19, 523–539 (1998)
Czernichovski, S.: Otimizadores analógicos não derivativos. Msc thesis, UNESP - São Paulo State University, Ilha Solteira - SP, Brazil (2001)
Lee, Y., Żak, S.H.: Genetic neural fuzzy control of anti-lock brake systems. In: American Control Conference - ACC, Arlington, Virginia, USA, pp. 671–676 (2001)
Lee, Y., Żak, S.H.: Designing a genetic neural fuzzy antilock-brake-system controller. IEEE Transactions on Evolutionary Computation 6(2), 198–211 (2002)
Cardim, R., Teixeira, M.C.M., Assunção, E.: Utilização de um otimizador analógico não-derivativo para a correção do fator de potência. In: II Congresso Temático de Dinâmica e Controle da SBMAC, São José dos Campos - SP, Brazil, pp. 1474–1483 (2003)
Sedra, A.S., Smith, K.C.: Microeletrônica. Makron Books Ltd, Brazil (2000)
Franco, S.: Design Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill, New York (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cardim, R., Teixeira, M.C.M., Assunção, E., Oki, N., de Carvalho, A.A., Covacic, M.R. (2006). Hardware Implementation of an Analog Neural Nonderivative Optimizer. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_125
Download citation
DOI: https://doi.org/10.1007/11893295_125
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46484-6
Online ISBN: 978-3-540-46485-3
eBook Packages: Computer ScienceComputer Science (R0)