Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hardware Implementation of an Analog Neural Nonderivative Optimizer

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4234))

Included in the following conference series:

  • 2308 Accesses

Abstract

Analog neural systems that can automatically find the minimum value of the outputs of unknown analog systems, described by convex functions, are studied. When information about derivative or gradient are not used, these systems are called analog nonderivative optimizers. An electronic circuit for the analog neural nonderivative optimizer proposed by Teixeira and Żak, and its simulation with software PSPICE, is presented. With the simulation results and hardware implementation of the system, the validity of the proposed optimizer can be verified. These results are original, from the best of the authors knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Korovin, S., Utkin, V.I.: Using sliding modes in static optimization and nonlinear programming. Automatica 10, 525–532 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Teixeira, M.C.M., Żak, S.H.: Analog nonderivative optimizers. In: American Control Conference - ACC, Albuquerque, New, Mexico, USA, pp. 3592–3596 (1997)

    Google Scholar 

  3. Teixeira, M.C.M., Żak, S.H.: Analog neural nonderivative optimizers. IEEE Transactions on Neural Networks 9(4), 629–638 (1998)

    Article  Google Scholar 

  4. Stout, D.F.: Handbook of Operational Amplifier Circuit Design. M. Kaufman, McGraw-Hill, New York (1976)

    Google Scholar 

  5. Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. John Wiley, Chichester (1993)

    MATH  Google Scholar 

  6. Will, A.B.: Intelligent Vehicle Steering and Braking Control Systems. PhD thesis, School of Electrical Engineering, Purdue University, West Lafayette, IN (1997)

    Google Scholar 

  7. Żak, S.H., Will, A.B.: Sliding mode wheel slip controller for an antilock braking system. International Journal of Vehicle 19, 523–539 (1998)

    Google Scholar 

  8. Czernichovski, S.: Otimizadores analógicos não derivativos. Msc thesis, UNESP - São Paulo State University, Ilha Solteira - SP, Brazil (2001)

    Google Scholar 

  9. Lee, Y., Żak, S.H.: Genetic neural fuzzy control of anti-lock brake systems. In: American Control Conference - ACC, Arlington, Virginia, USA, pp. 671–676 (2001)

    Google Scholar 

  10. Lee, Y., Żak, S.H.: Designing a genetic neural fuzzy antilock-brake-system controller. IEEE Transactions on Evolutionary Computation 6(2), 198–211 (2002)

    Article  Google Scholar 

  11. Cardim, R., Teixeira, M.C.M., Assunção, E.: Utilização de um otimizador analógico não-derivativo para a correção do fator de potência. In: II Congresso Temático de Dinâmica e Controle da SBMAC, São José dos Campos - SP, Brazil, pp. 1474–1483 (2003)

    Google Scholar 

  12. Sedra, A.S., Smith, K.C.: Microeletrônica. Makron Books Ltd, Brazil (2000)

    Google Scholar 

  13. Franco, S.: Design Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardim, R., Teixeira, M.C.M., Assunção, E., Oki, N., de Carvalho, A.A., Covacic, M.R. (2006). Hardware Implementation of an Analog Neural Nonderivative Optimizer. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_125

Download citation

  • DOI: https://doi.org/10.1007/11893295_125

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46484-6

  • Online ISBN: 978-3-540-46485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics