Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Characterization of Breast Abnormality Patterns in Digital Mammograms Using Auto-associator Neural Network

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4234))

Included in the following conference series:

Abstract

Presence of mass in breast tissues is highly indicative of breast cancer. The research work investigates the significance of neural-association of mass type of breast abnormality patterns for benign and malignant class characterization using auto-associator neural network and original features. The characterized patterns are finally classified into benign and malignant classes using a classifier neural network. Grey-level based statistical features, BI-RADS features, patient age feature and subtlety value feature have been used in proposed research work. The proposed research technique attained a 94% testing classification rate with a 100% training classification rate on digital mammograms taken from the DDSM benchmark database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tourassi, G.D.: Current Status of Computerized Decision Support Systems in Mammography. Studies in Fuzziness and Soft Computing 184, 173–208 (2005)

    Article  Google Scholar 

  2. Bassett, L.W.: 30F Imaging the Breast: Section 9 Principles of Imaging. In: Robert, M.D., Bast Jr., C., et al. (eds.) Cancer Medicine, 5th edn., pp. 420–427. The American Cancer Society and BC Decker, Inc (2000)

    Google Scholar 

  3. Sampat, M., Markey, M., Bovik, A.: Computer-Aided Detection and Diagnosis in Mammography. In: Handbook of Image and Video Processing, pp. 1195–1217 (2005)

    Google Scholar 

  4. Bird, R.E., Wallace, T.W., Yankaskas, B.C.: Analysis of Cancers Missed at Screening Mammography. Radiology 184(3), 613–617 (1992)

    Google Scholar 

  5. Birdwell, R.L., Ikeda, D.M., O’Shaughnessy, K.F., Sickles, E.A.: Mammographic Characteristics of 115 Missed Cancers Later Detected with Screening Mammography and the Potential Utility of Computer-aided Detection. Radiology 219(1), 192–202 (2001)

    Google Scholar 

  6. Baker, J.A., Kornguth, P.J., Lo, J.Y., Williford, M.E., Floyd Jr., C.E.: Breast Cancer: Prediction with Artificial Neural Network based on BI-RADS Standardized Lexicon. Radiology 196(3), 817–822 (1995)

    Google Scholar 

  7. Wei, D., Chan, H.-P., Petrick, N., Sahiner, B., Helvie, M.A., Adler, D.D., Goodsitt, M.M.: False-Positive Reduction Technique for Detection of Masses on Digital Mammograms: Global and Local Multiresolution Texture Analysis. Medical Physics 24(6), 903–914 (1997)

    Article  Google Scholar 

  8. Sahiner, B., Chan, H.-P., Petrick, N., Helvie, M.A., Goodsitt, M.M.: Computerized Characterization of Masses on Mammograms: The Rubber Band Straightening Transform and Texture Analysis. Medical Physics 25(4), 516–526 (1998)

    Article  Google Scholar 

  9. Bovis, K., Singh, S.: Detection of Masses in Mammograms using Texture Features. In: Proc. of the 15th International Conference on Pattern Recognition (2000)

    Google Scholar 

  10. Bovis, K., Singh, S., Fieldsend, J., Pinder, C.: Identification of Masses in Digital Mammograms with MLP and RBF Nets. In: Proc. of the IEEE International Joint Conference on Neural Networks (IEEE-INNS-ENNS 2000) (2000)

    Google Scholar 

  11. Christoyianni, I., Dermatas, E., Kokkinakis, G.: Fast Detection of Masses in Computer-Aided Mammography. Signal Processing Magazine 17(1), 54–64 (2000)

    Article  Google Scholar 

  12. Edwards, D.C., Lan, L., Metz, C.E., Giger, M.L., Nishikawa, R.M.: Estimating Three-Class Ideal Observer Decision Variables for Computerized Detection and Classification of Mammographic Mass Lesions. Medical Physics 31(1), 81–90 (2004)

    Article  Google Scholar 

  13. Kupinski, M.A., Lan, L., Metz, C.E., Giger, M.L., Nishikawa, R.M.: Ideal Observer Approximation using Bayesian Classification Neural Networks. IEEE Transactions on Medical Imaging 20(9), 886–899 (2001)

    Article  Google Scholar 

  14. Wu, Y., He, J., Man, Y., Arribas, J.I.: Neural Network Fusion Strategies for Identifying Breast Masses. In: Proc. of the IEEE International Joint Conference on Neural Networks (IEEE-IJCNN 2004) (2004)

    Google Scholar 

  15. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer Jr., P.: The Digital Database for Screening Mammography. In: Proc. of the Digital Mammography: IWDM 2000, 5th International Workshop on Digital Mammography, Medical Physics Publishing (2001)

    Google Scholar 

  16. Verma, B., Zakos, J.: A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques. IEEE Transactions on Information Technology in Biomedicine 5(1), 46–54 (2001)

    Article  Google Scholar 

  17. Lo, J.Y., Gavrielides, M.A., Markey, M.K., Jesneck, J.L.: Computer-Aided Classification of Breast Microcalcification Clusters: Merging of Features from Image Processing and Radiologists. In: Proc. of the SPIE Medical Imaging 2003, Image Processing (2003)

    Google Scholar 

  18. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    Google Scholar 

  19. Iversen, A., Taylor, N.K., Brown, K.E.: Classification and Verification through the Combination of the Multi-Layer Perceptron and Auto-Association Neural Networks. In: Proc. of the IEEE International Joint Conference on Neural Networks (IEEE-IJCNN 2005) (2005)

    Google Scholar 

  20. Panchal, R., Verma, B.: A Fusion of Neural Network Based Auto-associator and Classifier for the Classification of Microcalcification Patterns. In: Proc. of the 11th International Conference on Neural Information Processing (ICONIP 2004) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panchal, R., Verma, B. (2006). Characterization of Breast Abnormality Patterns in Digital Mammograms Using Auto-associator Neural Network. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_15

Download citation

  • DOI: https://doi.org/10.1007/11893295_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46484-6

  • Online ISBN: 978-3-540-46485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics