Abstract
One of the goals of cleaning an inconsistent database is to remove conflicts between tuples. Typically, the user specifies how the conflicts should be resolved. Sometimes this specification is incomplete, and the cleaned database may still be inconsistent. At the same time, data cleaning is a rather drastic approach to conflict resolution: It removes tuples from the database, which may lead to information loss and inaccurate query answers.
We investigate an approach which constitutes an alternative to data cleaning. The approach incorporates preference-driven conflict resolution into query answering. The database is not changed. These goals are achieved by augmenting the framework of consistent query answers through various notions of preferred repair. We axiomatize desirable properties of preferred repair families and propose different notions of repair optimality. Finally, we investigate the computational complexity implications of introducing preferences into the computation of consistent query answers.
Research supported by NSF Grants IIS-0119186 and IIS-0307434.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arenas, M., Bertossi, L., Chomicki, J.: Consistent Query Answers in Inconsistent Databases. In: ACM Symposium on Principles of Database Systems (PODS), pp. 68–79 (1999)
Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science (TCS) 296(3), 405–434 (2003)
Bertossi, L.: Consistent Query Answering in Databases. SIGMOD Record (to appear, 2006)
Bertossi, L., Chomicki, J.: Query Answering in Inconsistent Databases. In: Chomicki, J., van der Meyden, R., Saake, G. (eds.) Logics for Emerging Applications of Databases, pp. 43–83. Springer, Heidelberg (2003)
Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification. In: ACM SIGMOD International Conference on Management of Data (2005)
Brewka, G.: Preferred Subtheories: An Extended Logical Framework for Default Reasoning. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1043–1048 (1989)
Chomicki, J.: Preference Formulas in Relational Queries. ACM Transactions on Database Systems (TODS) 28(4), 427–466 (2003)
Chomicki, J., Marcinkowski, J.: Minimal-Change Integrity Maintenance Using Tuple Deletions. Information and Computation, 90–121 (2005)
Chomicki, J., Marcinkowski, J., Staworko, S.: Computing Consistent Query Answers Using Conflict Hypergraphs. In: International Conference on Information and Knowledge Management (CIKM), pp. 417–426. ACM Press, New York (2004)
Chomicki, J., Marcinkowski, J., Staworko, S.: Priority-Based Conflict Resolution in Inconsistent Relational Databases. Technical Report cs.DB/0506063, arXiv.org e-Print archive (June 2004)
Fagin, R., Ullman, J.D., Vardi, M.Y.: On the Semantics of Updates in Databases. In: ACM Symposium on Principles of Database Systems (PODS), pp. 352–356 (1983)
Flesca, S., Greco, S., Zumpano, E.: Active Integrity Constraints. In: ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP), pp. 98–107 (2004)
Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient Management of Inconsistent Databases. In: ACM SIGMOD International Conference on Management of Data (2005)
Greco, G., Lembo, D.: Data Integration with Preferences Among Sources. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 231–244. Springer, Heidelberg (2004)
Greco, S., Sirangelo, C., Trubitsyna, I., Zumpano, E.: Feasibility Conditions and Preference Criteria in Querying and Repairing Inconsistent Databases. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 44–55. Springer, Heidelberg (2004)
Grosof, B.N.: Prioritized Conflict Handling for Logic Programs. In: International Logic Programming Symposium, pp. 197–211 (1997)
Halpern, J.Y.: Defining Relative Likehood in Partially-Ordered Preferential Structures. Journal of Artificial Intelligence Research (1997)
Lomet, D.B.: Letter from the Editor-in-Chief. IEEE Data Eng. Bull. 23(4) (2000)
Motro, A., Anokhin, P., Acar, A.C.: Utility-based Resolution of Data Inconsistencies. In: International Workshop on Information Quality in Information Systems (IQIS), pp. 35–43. ACM, New York (2004)
Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)
Sakama, C., Inoue, K.: Prioritized logic programming and its application to commonsense reasoning. Artificial Intelligence 123, 185–222 (2000)
Van Nieuwenborgh, D., Vermeir, D.: Preferred Answer Sets for Ordered Logic Programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)
Vardi, M.Y.: The Complexity of Relational Query Languages. In: ACM Symposium on Theory of Computing (STOC), pp. 137–146 (1982)
Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, N.: ARKTOS: A Tool For Data Cleaning and Transformation in Data Warehouse Environments. IEEE Data Eng. Bull. 23(4), 42–47 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Staworko, S., Chomicki, J., Marcinkowski, J. (2006). Preference-Driven Querying of Inconsistent Relational Databases. In: Grust, T., et al. Current Trends in Database Technology – EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 4254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11896548_26
Download citation
DOI: https://doi.org/10.1007/11896548_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46788-5
Online ISBN: 978-3-540-46790-8
eBook Packages: Computer ScienceComputer Science (R0)