Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Open Extensible Tool Environment for Event-B

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4260))

Included in the following conference series:

  • 841 Accesses

Abstract

We consider modelling indispensable for the development of complex systems. Modelling must be carried out in a formal notation to reason and make meaningful conjectures about a model. But formal modelling of complex systems is a difficult task. Even when theorem provers improve further and get more powerful, modelling will remain difficult. The reason for this that modelling is an exploratory activity that requires ingenuity in order to arrive at a meaningful model. We are aware that automated theorem provers can discharge most of the onerous trivial proof obligations that appear when modelling systems. In this article we present a modelling tool that seamlessly integrates modelling and proving similar to what is offered today in modern integrated development environments for programming. The tool is extensible and configurable so that it can be adapted more easily to different application domains and development methods.

This research was carried out as part of the EU research project IST 511599 RODIN (Rigorous Open Development Environment for Complex Systems) http://rodin.cs.ncl.ac.uk

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Abrial, J.-R., Cansell, D.: Click’n’Prove: Interactive Proofs within Set Theory. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 1–24. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition and instantiation of discrete models. Fundamentae Informatica (to appear, 2006)

    Google Scholar 

  4. Back, R.J.R.: Refinement calculus, part II: Parallel and reactive programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 67–93. Springer, Heidelberg (1990)

    Google Scholar 

  5. Badeau, F., Amelot, A.: Using B as a high level programming language in an industrial project: Roissy VAL. In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system development with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, p. 363. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Barnett, M., Chang, B.-Y., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Bertot, Y., Castéran, P.(P.): Interactive theorem proving and program development: Coq’Art: the calculus of inductive constructions. Texts in theoretical computer science. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  9. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  10. Brucker, A.D., Rittinger, F., Wolff, B.: HOL-Z 2.0: A proof environment for Z-specifications. Journal of Universal Computer Science 9(2), 152–172 (2003)

    Google Scholar 

  11. Clearsy. Atelier B tool homepage, http://www.atelierb.societe.com/

  12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)

    Article  MathSciNet  Google Scholar 

  13. Eclipse. Eclipse platform homepage, http://www.eclipse.org/

  14. Filliâtre, J.-C.: Verification of Non-Functional Programs using Interpretations in Type Theory. Journal of Functional Programming 13(4), 709–745 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gamma, E., Beck, K.: Contributing to Eclipse. Addison Wesley, Reading (2003)

    Google Scholar 

  16. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based on common lisp. IEEE Transactions on Software Engineering 23(4), 203–213 (1997)

    Article  Google Scholar 

  17. King, J.C.: A new approach to program testing. In: Proceedings of the international conference on Reliable software, pp. 228–233. ACM Press, New York (1975)

    Chapter  Google Scholar 

  18. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley, Reading (2002)

    Google Scholar 

  19. Långbacka, T., von Wright, J.: Refining reactive systems in HOL using action systems. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 183–197. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Morgan, C., Hoang, T.S., Abrial, J.-R.: The challenge of probabilistic event B - extended abstract. In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 162–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Nipkow, T.: Structured Proofs in Isar/HOL. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 259–278. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  24. RODIN. RODIN project homepage, http://rodin.cs.ncl.ac.uk/

  25. RODIN. Deliverable D16: Prototype Plug-in Tools (2006), http://rodin.cs.ncl.ac.uk/deliverables.htm

  26. Saaltink, M.: The Z/EVES system. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.) ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  27. Snook, C., Butler, M.: UML-B: Formal modelling and design aided by UML. ACM Transactions on Software Engineering and Methodology (to appear, 2006), http://eprints.ecs.soton.ac.uk/10169/

  28. Snook, C., Sandstrom, K.: Using UML-B and U2B for formal refinement of digital components. In: Proceedings of Forum on specification and design languages (FDL 2003) (2003)

    Google Scholar 

  29. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. International Series in Computer Science. Prentice-Hall, New York (1992)

    Google Scholar 

  30. Winterstein, D., Aspinall, D., Lüth, C.: Proof general / eclipse: A generic interface for interactive proof. In: IJCAI, pp. 1587–1588 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abrial, JR., Butler, M., Hallerstede, S., Voisin, L. (2006). An Open Extensible Tool Environment for Event-B. In: Liu, Z., He, J. (eds) Formal Methods and Software Engineering. ICFEM 2006. Lecture Notes in Computer Science, vol 4260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11901433_32

Download citation

  • DOI: https://doi.org/10.1007/11901433_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47460-9

  • Online ISBN: 978-3-540-47462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics