Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4218))

Abstract

We consider infinite-state discrete Markov chains which are eager: the probability of avoiding a defined set of final states for more than n steps is bounded by some exponentially decreasing function f(n). We prove that eager Markov chains include those induced by Probabilistic Lossy Channel Systems, Probabilistic Vector Addition Systems with States, and Noisy Turing Machines, and that the bounding function f(n) can be effectively constructed for them. Furthermore, we study the problem of computing the expected reward (or cost) of runs until reaching the final states, where rewards are assigned to individual runs by computable reward functions. For eager Markov chains, an effective path exploration scheme, based on forward reachability analysis, can be used to approximate the expected reward up-to an arbitrarily small error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Baier, C., Iyer, P., Jonsson, B.: Reasoning about probabilistic lossy channel systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 320. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Abdulla, P.A., Čerāns, K., Jonsson, B., Yih-Kuen, T.: Algorithmic analysis of programs with well quasi-ordered domains. Information and Computation 160, 109–127 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abdulla, P.A., Henda, N.B., Mayr, R.: Verifying infinite Markov chains with a finite attractor or the global coarseness property. In: Proc. LICS 2005, pp. 127–136 (2005)

    Google Scholar 

  4. Abdulla, P.A., Henda, N.B., Mayr, R., Sandberg, S.: Eager Markov chains. Technical Report 2006-009, Department of Information Technology, Uppsala University (2006)

    Google Scholar 

  5. Abdulla, P.A., Henda, N.B., Mayr, R., Sandberg, S.: Limiting behavior of Markov chains with eager attractors. In: Proc. QEST 2006. IEEE Computer Society Press, Los Alamitos (to appear, 2006)

    Google Scholar 

  6. Abdulla, P.A., Rabinovich, A.: Verification of probabilistic systems with faulty communication. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 39–53. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Asarin, E., Collins, P.: Noisy Turing machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1031–1042. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Trans. on Computational Logic 1(1), 162–170 (2000)

    Article  MathSciNet  Google Scholar 

  9. Baier, C., Bertrand, N., Schnoebelen, P.: A note on the attractor-property of infinite-state Markov chains. Information Processing Letters 97(2), 58–63 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Baier, C., Engelen, B.: Establishing qualitative properties for probabilistic lossy channel systems: An algorithmic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 34–52. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model checking meets performance evaluation. ACM Performance Evaluation Review 32(2), 10–15 (2005)

    Article  Google Scholar 

  12. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Automated performance and dependability evaluation using model checking. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 261–289. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Bertrand, N., Schnoebelen, P.: Model checking lossy channels systems is probably decidable. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 120–135. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Brázdil, T., Kučera, A.: Computing the expected accumulated reward and gain for a subclass of infinite Markov chains. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 372–383. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  16. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. de Alfaro, L., Kwiatkowska, M.Z., Norman, G., Parker, D., Segala, R.: Symbolic model checking of probabilistic processes using mtbdds and the Kronecker representation. In: Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and TACAS 2000. LNCS, vol. 1785, pp. 123–137. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Esparza, J., Etessami, K.: Verifying probabilistic procedural programs. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 16–31. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. In: Proc. LICS 2004, pp. 12–21 (2004)

    Google Scholar 

  20. Esparza, J., Kučera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown automata: Expectations and variances. In: Proc. LICS 2005, pp. 117–126 (2005)

    Google Scholar 

  21. Etessami, K., Yannakakis, M.: Algorithmic verification of recursive probabilistic state machines. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 253–270. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Etessami, K., Yannakakis, M.: Recursive Markov Chains, Stochastic Grammars, and Monotone Systems of Nonlinear Equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 340–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Feller, W.: An Introduction to Probability Theory and Its Applications, 2nd edn., vol. 1. Wiley & Sons, Chichester (1966)

    MATH  Google Scholar 

  25. Hart, S., Sharir, M.: Probabilistic temporal logics for finite and bounded models. In: Proc. STOC 1984, pp. 1–13 (1984)

    Google Scholar 

  26. Iyer, P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 667–681. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  27. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking in practice: Case studies with PRISM. ACM Performance Evaluation Review 32(2), 16–21 (2005)

    Article  Google Scholar 

  28. Lehmann, D., Shelah, S.: Reasoning with time and chance. Information and Control 53, 165–198 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rabinovich, A.: Quantitative analysis of probabilistic lossy channel systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1008–1021. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  30. Stǎnicǎ, P.: Good lower and upper bounds on binomial coefficients. Journal of Inequalities in Pure and Applied Mathematics 2(3) (2001)

    Google Scholar 

  31. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proc. FOCS 1985, pp. 327–338 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdulla, P.A., Ben Henda, N., Mayr, R., Sandberg, S. (2006). Eager Markov Chains. In: Graf, S., Zhang, W. (eds) Automated Technology for Verification and Analysis. ATVA 2006. Lecture Notes in Computer Science, vol 4218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11901914_5

Download citation

  • DOI: https://doi.org/10.1007/11901914_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47237-7

  • Online ISBN: 978-3-540-47238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics