Abstract
Querying about the time-varying locations of moving objects is particularly cumbersome in environments composed of a very large number of distributed spatio-temporal database servers. In particular, searching for a specific object can require to visit each server. In this paper we propose a strategy to avoid such an exhaustive search that is based on the use of a centralized index, called meta-index, which is the entry point for spatio-temporal search queries. This index allows a software agent to determine a search plan for visiting the most likely servers to contain the target object. An important issue for large and dynamic distributed servers systems is to keep the meta-index as up-to-date as possible with the real system. This paper defines and compares two different strategies for maintaining properly updated the meta-index: crawling, where the centralized system that keeps the index controls itself the updating process, and harvesting, where each distributed database server autonomously transfers data directly into the central index system. Both strategies were implemented and compared by using discrete-event simulators with demanding synthetic spatio-temporal data. The results show that crawling has better performance.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11914952_55.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., Raghavan, S.: Searching the web. ACM Transactions on Internet Technology 1(1), 2–43 (2001)
Baeza-Yates, R., Castillo, C., Marín, M., Rodríguez, A.: Crawling a country: Better strategies than breadth-first for web page ordering. In: WWW 2005, Industrial Track. ACM Press, New York (2005)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley/ACM Press (1999)
Cohen, E., Kaplan, H.: Refreshment policies for web content caches. Comput. Networks 38(6), 795–808 (2002)
Do, L., Ram, O., Drew, P.: The need for distributed asynchronous transactions. ACM SIGMOD Record 28(2), 534–535 (1999)
du Mouza, C., Rigaux, P.: Web architectures for scalable moving object servers. In: Proceedings of the 10th ACM international symposium on Advances in geographic information systems, pp. 17–22. ACM Press, New York (2002)
Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) frequent items in distributed data streams. In: ICDE, pp. 767–778. IEEE Computer Society, Los Alamitos (2005)
Olston, C., Widom, J.: Efficient monitoring and querying of distributed, dynamic data via approximate replication. IEEE Data Eng. Bull. 28(1), 11–18 (2005)
O’Rourke, J.: Computational Geometry. Cambridge University Press, Cambridge (1993)
Patroumpas, K., Sellis, T.K.: Managing trajectories of moving objects as data streams. In: Sander, J., Nascimento, M.A. (eds.) STDBM, pp. 41–48 (2004)
Shahabi, C., Kolahdouzan, M., Thakkar, S., Ambite, J., Knoblock, C.: Efficiently querying moving objects with pre-defined paths in a distributed environment. In: Proceedings of the 9th ACM international symposium on Advances in geographic information systems, pp. 34–40. ACM Press, New York (2001)
Tao, Y., Papadias, D.: Historical spatio-temporal aggregation. ACM Transactions on Information Systems 23(1), 61–102 (2005)
Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the generation of spatiotemporal datasets. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 147–164. Springer, Heidelberg (1999)
Xia, Y., Prabhakar, S.: Efficient CNG indexing in location aware services. In: 23rd International Conference on Distributed Computing Systems Workshops, p. 414. IEEE Press, Los Alamitos (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marín, M., Rodríguez, A., Fincke, T., Román, C. (2006). Searching Moving Objects in a Spatio-temporal Distributed Database Servers System. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. OTM 2006. Lecture Notes in Computer Science, vol 4276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11914952_25
Download citation
DOI: https://doi.org/10.1007/11914952_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48274-1
Online ISBN: 978-3-540-48283-3
eBook Packages: Computer ScienceComputer Science (R0)