Abstract
We address the problems of combining satisfiability procedures and consider two combination scenarios: (i) the combination within the class of rewriting-based satisfiability procedures and (ii) the Nelson-Oppen combination of rewriting-based satisfiability procedures and arbitrary satisfiability procedures. In each scenario, we use meta-saturation, which schematizes saturation of the set containing the axioms of a given theory and an arbitrary set of ground literals, to syntactically decide sufficient conditions for the combinability of rewriting-based satisfiability procedures. For (i), we give a sufficient condition for the modular termination of meta-saturation. When meta-saturation for the union of theories halts, it yields a rewriting-based satisfiability procedure for the union. For (ii), we use meta-saturation to prove the stable infiniteness of the component theories and deduction completeness of their rewriting-based satisfiability procedures. These properties are important to establish the correctness of the Nelson-Oppen combination method and to obtain an efficient implementation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a Rewriting Approach to Satisfiability Procedures: Extension, Combination of Theories and an Experimental Appraisal. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 65–80. Springer, Heidelberg (2005)
Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures (2006). Extended version of [1], Available at: http://arxiv.org/abs/cs.AI/0604054
Armando, A., Ranise, S., Rusinowitch, M.: A Rewriting Approach to Satisfiability Procedures. Info. and Comp. 183(2), 140–164 (2003)
Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 513–527. Springer, Heidelberg (2006)
Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In: Handbook of Theoretical Computer Science, ch. 6, vol. B, Elsevier Science Publishers B. V, Amsterdam (1990)
Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A Theorem Prover for Program Checking. Technical Report HPL-2003-148, HP Laboratories (2003)
Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: On superposition-based satisfiability procedures and their combination. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005)
Lynch, C., Morawska, B.: Automatic decidability. In: Proc. of the IEEE Symposium on Logic in Computer Science (July 2002)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I, pp. 371–443. Elsevier Science, Amsterdam (2001)
Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Seventeenth International Joint Conference on Artificial Intelligence, pp. 611–617 (2001)
van Dalen, D.: Logic and Structure, 2nd edn. Springer, Heidelberg (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kirchner, H., Ranise, S., Ringeissen, C., Tran, DK. (2006). Automatic Combinability of Rewriting-Based Satisfiability Procedures. In: Hermann, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2006. Lecture Notes in Computer Science(), vol 4246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11916277_37
Download citation
DOI: https://doi.org/10.1007/11916277_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48281-9
Online ISBN: 978-3-540-48282-6
eBook Packages: Computer ScienceComputer Science (R0)