Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simultaneous Graph Embeddings with Fixed Edges

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4271))

Included in the following conference series:

Abstract

We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view.

More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 243–255. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 195–205. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Erten, C., Kobourov, S.G.: Simultaneous embedding of a planar graph and its dual on the grid. Theory of Computing Systems 38, 313–327 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: Layout algorithms and visualization schemes. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 437–449. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self–intersecting when drawn simultaneously. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Di Giacomo, E., Liotta, G.: A note on simultaneous embedding of planar graphs. In: 21st European Workshop on Comp. Geometry, pp. 207–210 (2005)

    Google Scholar 

  7. Kobourov, S.G., Pitta, C.: An interactive multi-user system for simultaneous graph drawing. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 492–501. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Kratochvíl, J.: String graphs II Recognizing string graphs is NP-hard. Journal of Combinatorial Theory B 52, 67–78 (1991)

    Article  MATH  Google Scholar 

  9. Kratochvíl, J.: Crossing number of abstract topological graphs. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 238–245. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Kratochvíl, J., Lubiw, A., Nešetřil, J.: Noncrossing subgraphs in topological layouts. SIAM Journal on Discrete Mathematics 4(2), 223–244 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Journal Comput. Syst. Sci. 67(2), 365–380 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M. (2006). Simultaneous Graph Embeddings with Fixed Edges. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_29

Download citation

  • DOI: https://doi.org/10.1007/11917496_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48381-6

  • Online ISBN: 978-3-540-48382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics