Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Proof-Producing Program Analysis

  • Conference paper
Theoretical Aspects of Computing - ICTAC 2006 (ICTAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4281))

Included in the following conference series:

Abstract

Proof-producing program analysis augments the invariants inferred by an abstract interpreter with their correctness proofs. If these invariants are precise enough to guarantee safety, this method is an automatic verification tool. We present proof-synthesis algorithms for a simple flow chart language and domains \({\mathcal{V}}\to{\mathbb{V}}\) mapping variables to abstract values and discuss some benefits for proof carrying code systems. Our work has been carried out in Isabelle/HOL and incorporated within a verified proof carrying code system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, E., Puebla, G., Hermenegildo, M.V.: Abstraction-carrying code. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 380–397. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. J. Autom. Reasoning 28(3), 321–336 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertot, Y., Castéran, P.: Coq’Art: The Calculus of Inductive Constructions. Text in theor. comp. science: an EATCS series, vol. XXV. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  4. Bjorner, N.S.: Integrating decision procedures for temporal verification. PhD thesis, Stanford University, Adviser-Zohar Manna (1998)

    Google Scholar 

  5. Cachera, D., Jensen, T., Pichardie, D., Rusu, V.: Extracting a Data Flow Analyser in Constructive Logic. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 385–400. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Cormen, Leiserson, Rivest: Introduction to Algorithms. MIT Press, Cambridge Mass. (1990)

    MATH  Google Scholar 

  7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Los Angeles, California, pp. 238–252. ACM Press, New York (1977)

    Chapter  Google Scholar 

  8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, Texas, pp. 269–282. ACM Press, New York (1979)

    Chapter  Google Scholar 

  9. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual machine and compiler. ACM Transactions on Programming Languages and Systems 28(4), 619–695 (2006)

    Article  Google Scholar 

  10. Miné, A.: Representation of two-variable difference or sum constraint set and application to automatic program analysis. Master’s thesis, ENS-DI, Paris (2000)

    Google Scholar 

  11. Monniaux, D.: Réalisation mécanisée d’interpréteurs abstraits. Rapport de DEA, Université Paris VII, French (1998)

    Google Scholar 

  12. Necula, G.C.: Proof-carrying code. In: Proc. 24th ACM Symp. Principles of Programming Languages, pp. 106–119. ACM Press, New York (1997)

    Google Scholar 

  13. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  14. Paulson, L.C.: Logic and Computation. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  15. Seo, S., Yang, H., Yi, K.: Automatic construction of hoare proofs from abstract interpretation results. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 230–245. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Wildmoser, M., Chaieb, A., Nipkow, T.: Bytecode analysis for proof carrying code. In: RSCTC 2000. Electronic Notes in Computer Science (2005)

    Google Scholar 

  17. Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep embedding. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 305–320. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaieb, A. (2006). Proof-Producing Program Analysis. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds) Theoretical Aspects of Computing - ICTAC 2006. ICTAC 2006. Lecture Notes in Computer Science, vol 4281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11921240_20

Download citation

  • DOI: https://doi.org/10.1007/11921240_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48815-6

  • Online ISBN: 978-3-540-48816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics