Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Region-Based Semantic Similarity Propagation for Image Retrieval

  • Conference paper
Advances in Multimedia Information Processing - PCM 2006 (PCM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4261))

Included in the following conference series:

Abstract

In order to reduce the gap between low-level image features and high-level image semantics, various long term learning strategies were integrated into content-based image retrieval system. The strategies always use the semantic relationships among images to improve the effectiveness of the retrieval system. This paper proposes a semantic similarity propagation method to mine the hidden semantic relationships among images. The semantic relationships are propagated between the similar images and regions. Experimental results verify the improvement on similarity propagation and image retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blei, D., Jordan, M.: Modeling Annotated Data. In: Proceedings of 26th International Conference on Research and Development in Information Retrieval (SIGIR) (2003)

    Google Scholar 

  2. Jin, R., Cai, J.Y., Si, L.: Effective Automatic Image Annotation Via A Coherent Language Model and Active Learning. In: ACM Conference on Multimedia (ACMM 2004), October 10–16, New York, USA (2004)

    Google Scholar 

  3. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic Image Annotation and Retrieval Using Cross-Media Relevance Models. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval (2003)

    Google Scholar 

  4. Wenyin, L., Dumais, S., Sun, Y., Zhang, H., Czerwinski, M., Field, B.: Semi-automatic image annotation. In: Proc. Interact 2001 Conference on Human Computer Interaction (2001)

    Google Scholar 

  5. Jing, F., Li, M.J., Zhang, H.J., Zhang, B.: An Efficient and Effective Region-Based Image Retrieval Framework. IEEE Transactions on Image Processing 13(5) (May 2004)

    Google Scholar 

  6. Gondra, I., Heisterkamp, D.R.: Learning in Region-Based Image Retrieval with Generalized Support Vector Machines. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2004) (2004)

    Google Scholar 

  7. Hsu, C.-T., Li, C.-Y.: Relevance Feedback Using Generalized Bayesian Framework With Region-Based Optimization Learning. IEEE Transactions on Image Processing 14(10) (October 2005)

    Google Scholar 

  8. Rui, Y., et al.: Relevancefeedback: Apowerful tool in interactive content-based image retrieval. IEEE Trans. Special Issue Segmentation, Description and Retrieval of Video Content (1998)

    Google Scholar 

  9. Tieu, K., Viola, P.: Boosting image retrieval. International Journal of Computer Vision 56(1) (2004)

    Google Scholar 

  10. Yin, P.Y., Bhanu, B., Chang, K.C., Dong, A.: Integrating relevance feedback techniques for image retrieval using reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1536–1551 (2005)

    Article  Google Scholar 

  11. He, X., King, O., Ma, W.Y., Li, M., Zhang, H.J.: Learning a semantic space from user’s relevance feedback for image retrieval. IEEE Trans. Circuit and Systems for Video Technology 13(1), 39–48 (2003)

    Article  Google Scholar 

  12. Han, J.W., Ngan, K.N., Li, M.J., Zhang, H.J.: A Memory Learning Framework for Effective Image Retrieval. IEEE Transactions on Image Processing 14(4) (April 2005)

    Google Scholar 

  13. Li, M., Chen, Z., Zhang, H.J.: Statistical correlation analysis in image retrieval. Pattern Recognition 35, 2687–2693 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. He, X.F., Ma, W.Y., Zhang, H.J.: Learning an Image Manifold for Retrieval. In: ACM Conference on Multimedia(ACMM 2004), New York (2004)

    Google Scholar 

  15. Heisterkamp, D.R.: Building a latent semantic index of an image database from patterns of relevance feedback. In: Proceedings of 16th International Conference on Pattern Recognition (ICPR 2002), Quebec, Canada, vol. 4, pp. 134–137 (2002)

    Google Scholar 

  16. Bang, H.Y., Zhang, C., Chen, T.: Semantic Propagation from Relevance Feedbacks. In: 2004 IEEE International Conference on Multimedia and Expo (ICME 2004) (2004)

    Google Scholar 

  17. Yang, J., Li, Q., Zhuang, Y.T.: Towards Data-Adaptive and User-Adaptive Image Retrieval by Peer Indexing. International Journal of Computer Vision 56(1/3), 47–63 (2004)

    Article  Google Scholar 

  18. Wang, X.J., Ma, W.Y., Xue, G.R., Li, X.: Multi-Model Similarity Propagation and its Application for Web Image Retrieval. In: ACM Multimedia 2004, New York, NY USA, October 10-16 (2004)

    Google Scholar 

  19. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, W., Pan, H., Wu, J. (2006). Region-Based Semantic Similarity Propagation for Image Retrieval. In: Zhuang, Y., Yang, SQ., Rui, Y., He, Q. (eds) Advances in Multimedia Information Processing - PCM 2006. PCM 2006. Lecture Notes in Computer Science, vol 4261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922162_116

Download citation

  • DOI: https://doi.org/10.1007/11922162_116

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48766-1

  • Online ISBN: 978-3-540-48769-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics