Abstract
In order to reduce the gap between low-level image features and high-level image semantics, various long term learning strategies were integrated into content-based image retrieval system. The strategies always use the semantic relationships among images to improve the effectiveness of the retrieval system. This paper proposes a semantic similarity propagation method to mine the hidden semantic relationships among images. The semantic relationships are propagated between the similar images and regions. Experimental results verify the improvement on similarity propagation and image retrieval.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blei, D., Jordan, M.: Modeling Annotated Data. In: Proceedings of 26th International Conference on Research and Development in Information Retrieval (SIGIR) (2003)
Jin, R., Cai, J.Y., Si, L.: Effective Automatic Image Annotation Via A Coherent Language Model and Active Learning. In: ACM Conference on Multimedia (ACMM 2004), October 10–16, New York, USA (2004)
Jeon, J., Lavrenko, V., Manmatha, R.: Automatic Image Annotation and Retrieval Using Cross-Media Relevance Models. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval (2003)
Wenyin, L., Dumais, S., Sun, Y., Zhang, H., Czerwinski, M., Field, B.: Semi-automatic image annotation. In: Proc. Interact 2001 Conference on Human Computer Interaction (2001)
Jing, F., Li, M.J., Zhang, H.J., Zhang, B.: An Efficient and Effective Region-Based Image Retrieval Framework. IEEE Transactions on Image Processing 13(5) (May 2004)
Gondra, I., Heisterkamp, D.R.: Learning in Region-Based Image Retrieval with Generalized Support Vector Machines. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2004) (2004)
Hsu, C.-T., Li, C.-Y.: Relevance Feedback Using Generalized Bayesian Framework With Region-Based Optimization Learning. IEEE Transactions on Image Processing 14(10) (October 2005)
Rui, Y., et al.: Relevancefeedback: Apowerful tool in interactive content-based image retrieval. IEEE Trans. Special Issue Segmentation, Description and Retrieval of Video Content (1998)
Tieu, K., Viola, P.: Boosting image retrieval. International Journal of Computer Vision 56(1) (2004)
Yin, P.Y., Bhanu, B., Chang, K.C., Dong, A.: Integrating relevance feedback techniques for image retrieval using reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1536–1551 (2005)
He, X., King, O., Ma, W.Y., Li, M., Zhang, H.J.: Learning a semantic space from user’s relevance feedback for image retrieval. IEEE Trans. Circuit and Systems for Video Technology 13(1), 39–48 (2003)
Han, J.W., Ngan, K.N., Li, M.J., Zhang, H.J.: A Memory Learning Framework for Effective Image Retrieval. IEEE Transactions on Image Processing 14(4) (April 2005)
Li, M., Chen, Z., Zhang, H.J.: Statistical correlation analysis in image retrieval. Pattern Recognition 35, 2687–2693 (2002)
He, X.F., Ma, W.Y., Zhang, H.J.: Learning an Image Manifold for Retrieval. In: ACM Conference on Multimedia(ACMM 2004), New York (2004)
Heisterkamp, D.R.: Building a latent semantic index of an image database from patterns of relevance feedback. In: Proceedings of 16th International Conference on Pattern Recognition (ICPR 2002), Quebec, Canada, vol. 4, pp. 134–137 (2002)
Bang, H.Y., Zhang, C., Chen, T.: Semantic Propagation from Relevance Feedbacks. In: 2004 IEEE International Conference on Multimedia and Expo (ICME 2004) (2004)
Yang, J., Li, Q., Zhuang, Y.T.: Towards Data-Adaptive and User-Adaptive Image Retrieval by Peer Indexing. International Journal of Computer Vision 56(1/3), 47–63 (2004)
Wang, X.J., Ma, W.Y., Xue, G.R., Li, X.: Multi-Model Similarity Propagation and its Application for Web Image Retrieval. In: ACM Multimedia 2004, New York, NY USA, October 10-16 (2004)
Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lu, W., Pan, H., Wu, J. (2006). Region-Based Semantic Similarity Propagation for Image Retrieval. In: Zhuang, Y., Yang, SQ., Rui, Y., He, Q. (eds) Advances in Multimedia Information Processing - PCM 2006. PCM 2006. Lecture Notes in Computer Science, vol 4261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922162_116
Download citation
DOI: https://doi.org/10.1007/11922162_116
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48766-1
Online ISBN: 978-3-540-48769-2
eBook Packages: Computer ScienceComputer Science (R0)