Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolutionary Method for Nonlinear Systems of Equations

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

Abstract

We propose a new perspective for solving systems of nonlinear equations by viewing them as a multiobjective optimization problem where every equation represents an objective function whose goal is to minimize the difference between the right- and left-hand side of the corresponding equation of the system. An evolutionary computation technique is suggested to solve the problem obtained by transforming the system into a multiobjective optimization problem. Results obtained are compared with some of the well-established techniques used for solving nonlinear equation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brezinski, C.: Projection methods for systems of equations. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  2. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation 19, 577–593 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  4. Cuyt, A., van der Cruyssen, P.: Abstract Pade approximants for the solution of a system of nonlinear equations. Comp. Math. and Appl. 9, 139–149 (1983)

    Google Scholar 

  5. Denis, J.E.: On Newton’s Method and Nonlinear Simultaneous Replacements. SIAM Journal of Numerical Analisys 4, 103–108 (1967)

    Article  Google Scholar 

  6. Denis, J.E.: On Newton–like Methods. Numerical Mathematics 11, 324–330 (1968)

    Article  Google Scholar 

  7. Denis, J.E.: On the Convergence of Broyden’s Method for Nonlinear Systems of Equations. Mathematics of Computation 25, 559–567 (1971)

    Article  Google Scholar 

  8. Denis, J.E., Wolkowicz, H.: Least–Change Secant Methods, Sizing, and Shifting. SIAM Journal of Numerical Analisys 30, 1291–1314 (1993)

    Article  Google Scholar 

  9. Denis, J.E., El-Alem, M., Williamson, K.: A Trust-Region Algorithm for Least-Squares Solutions of Nonlinear Systems of Equalities and Inequalities. SIAM Journal on Optimization 9(2), 291–315 (1999)

    Article  MathSciNet  Google Scholar 

  10. Effati, S., Nazemi, A.R.: A new methid for solving a system of the nonlinear equations. Applied Mathematics and Computation 168, 877–894 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  12. Gragg, W., Stewart, G.: A stable variant of the secant method for solving nonlinear equations. SIAM Journal of Numerical Analisys 13, 889–903 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  15. Steuer, R.E.: Multiple Criteria Optimization. Theory, Computation, and Application. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, New York (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grosan, C., Abraham, A., Gelbukh, A. (2006). Evolutionary Method for Nonlinear Systems of Equations. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_27

Download citation

  • DOI: https://doi.org/10.1007/11925231_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics