Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Comparing Schedule Generation Schemes in Memetic Algorithms for the Job Shop Scheduling Problem with Sequence Dependent Setup Times

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

Abstract

The Job Shop Scheduling Problem with Sequence Dependent Setup Times (SDJSS) is an extension of the Job Shop Scheduling Problem (JSS) that has interested to researchers during the last years. In this paper we confront the SDJSS problem by means of a memetic algorithm. We study two schedule generation schemas that are extensions of the well known G&T algorithm for the JSS. We report results from an experimental study showing that the proposed approaches produce similar results and that both of them are more efficient than other genetic algorithm proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artigues, C., Lopez, P., P.D., A.: Schedule generation schemes for the job shop problem with sequence-dependent setup times: Dominance properties and computational analysis. Annals of Operational Research 138, 21–52 (2005)

    Google Scholar 

  2. Bierwirth, C.: A Generalized Permutation Approach to Jobshop Scheduling with Genetic Algorithms. OR Spectrum 17, 87–92 (1995)

    MATH  Google Scholar 

  3. Brucker, P., Jurisch, B., Sievers, B.: A branch and bound algorithm for the job-shop scheduling problem. Discrete Applied Mathematics 49, 107–127 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brucker, P., Thiele, O.: A branch and bound method for the general-job shop problem with sequence-dependent setup times. Operations Research Spektrum 18, 145–161 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brucker, P.: Scheduling Algorithm, 4th edn. Springer, Heidelberg (2004)

    Google Scholar 

  6. Carlier, J., Pinson, E.: Adjustment of heads and tails for the job-shop problem. European Journal of Operational Research 78, 146–161 (1994)

    Article  MATH  Google Scholar 

  7. Cheung, W., Zhou, H.: Using Genetic Algorithms and Heuristics for Job Shop Scheduling with Sequence-Dependent Setup Times. Annals of Operational Research 107, 65–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dell Amico, M., Trubian, M.: Applying Tabu Search to the Job-shop Scheduling Problem. Annals of Operational Research 41, 231–252 (1993)

    Article  MATH  Google Scholar 

  9. Giffler, B., Thomson, G.L.: Algorithms for Solving Production Scheduling Problems. Operations Reseach 8, 487–503 (1960)

    Article  MATH  Google Scholar 

  10. González, M.A., Sierra, M.R., Vela, C.R., Varela, R.: Genetic Algorithms Hybridized with Greedy Algorithms and Local Search over the Spaces of Active and Semi-active Schedules. LNCS, Springer, Heidelberg (to appear, 2006)

    Google Scholar 

  11. González, M.A., Vela, C.R., Puente, J., Sierra, M.R., Varela, R.: Memetic Algorithms for the Job Shop Scheduling Problem with Sequence Dependent Setup Times. In: Proceedings of ECAI Workshop on Evolutionary Computation (to appear, 2006)

    Google Scholar 

  12. Mattfeld, D.C.: Evolutionary Search and the Job Shop. Investigations on Genetic Algorithms for Production Scheduling, November 1995. Springer, Heidelberg (1995)

    Google Scholar 

  13. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Management Science 42, 797–813 (1996)

    Article  MATH  Google Scholar 

  14. Ovacik, I.M., Uzsoy, R.: Exploiting shop floors status information to schedule complex jobs. Operations Research Letters 14, 251–256 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Taillard, E.D.: Parallel Taboo Search Techniques for the Job Shop Scheduling Problem. ORSA Journal of Computing 6, 108–117 (1993)

    Google Scholar 

  16. Varela, R., Vela, C.R., Puente, J., Gmez, A.: A knowledge-based evolutionary strategy for scheduling problems with bottlenecks. European Journal of Operational Research 145, 57–71 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Varela, R., Serrano, D., Sierra, M.: New Codification Schemas for Scheduling with Genetic Algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 11–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Zoghby, J., Barnes, J.W., Hasenbein, J.J.: Modeling the re-entrant job shop scheduling problem with setup for metaheuristic searches. European Journal of Operational Research 167, 336–348 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González, M.A., Vela, C.R., Sierra, M., González, I., Varela, R. (2006). Comparing Schedule Generation Schemes in Memetic Algorithms for the Job Shop Scheduling Problem with Sequence Dependent Setup Times. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_44

Download citation

  • DOI: https://doi.org/10.1007/11925231_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics