Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Reliable Short Rules to Avoid Unnecessary Tests in Decision Trees

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

  • 990 Accesses

Abstract

It is known that in decision trees the reliability of lower branches is worse than the upper branches due to data fragmentation problem. As a result, unnecessary tests of attributes may be done, because decision trees may require tests that are not best for some part of the data objects. To supplement the weak point of decision trees of data fragmentation, using reliable short rules with decision tree is suggested, where the short rules come from limited application of association rule finding algorithms. Experiment shows the method can not only generate more reliable decisions but also save test costs by using the short rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth International Group, Inc. (1984)

    Google Scholar 

  3. StatSoft, Inc.: Electronic Statistics Textbook. Tulsa, OK, StatSoft (2004), WEB: http://www.statsoft.com/textbook/stathome.html

  4. Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A Fast Scalable Classifier for Data Mining. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Shafer, J., Agrawal, R., Mehta, M.: SPRINT: A Scalable Parallel Classifier for Data Mining. In: Proc. 1996 Int. Conf. Very Large Data Bases, Bombay, India, September 1996, pp. 544–555 (1996)

    Google Scholar 

  6. Rastogi, R., Shim, K.: PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning. Data Mining and Knowledge Discovery 4(4), 315–344 (2002)

    Article  Google Scholar 

  7. Gehrke, J., Ramakrishnan, R., Ganti, V.: Rainforest: A Framework for Fast Decision Tree Construction of Large Datasets. In: Proc. 1998 Int. Conf. Very Large Data Bases, New York, August 1998, pp. 416–427 (1998)

    Google Scholar 

  8. Catlett, J.: Megainduction: Machine Learning on Very Large Databases. PhD thesis, University of Sydney, Australia (1991)

    Google Scholar 

  9. SAS: Decision Tree Modeling Course Notes. SAS Publishing (2002)

    Google Scholar 

  10. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  11. Almuallim, H., Dietterich, T.G.: Efficient Algorithms for Identifying Relevant Features. In: Proc. of the 9th Canadian Conference on Artificial Intelligence, pp. 38–45 (1992)

    Google Scholar 

  12. Kononenko, I., et al.: Overcoming the Myopia of Inductive Learning Algorithms with RELIEF. Applied Intelligence 7(1), 39–55 (1997)

    Article  Google Scholar 

  13. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspective. Kluwer International (1998)

    Google Scholar 

  14. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Proc. of the 4th International Conference on Knowledge Discovery and Data Mining (KDD 1998), New York, pp. 80–86 (1998)

    Google Scholar 

  15. Liu, B., Hu, M., Hsu, W.: Multi-level Organization and Summarization of the Discovered Rule. In: Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, pp. 208–217 (2000)

    Google Scholar 

  16. Wang, K., Zhou, S., He, Y.: Growing Decision Trees on Support-less Association Rules. In: Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, pp. 265–269 (2000)

    Google Scholar 

  17. Berzal, F., Cubero, J., Sanchez, D., Serrano, J.M.: ART: A Hybrid Classification Model. Machine Learning 54, 67–92 (2004)

    Article  MATH  Google Scholar 

  18. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  19. Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules. In: Proceedings 2001 Int. Conf. on Data Mining (ICDM 2001), San Jose, CA (2001)

    Google Scholar 

  20. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD 1998), New York (1998)

    Google Scholar 

  21. Hettich, S., Bay, S.D.: The UCI KDD Archive. University of California, Department of Information and Computer Science, Irvine, CA (1999), http://kdd.ics.uci.edu

  22. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  23. Agrawal, R., Mannila, H., Toivonen, H., Verkamo, A.I.: Fast Discovery of Association Rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smith, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press/The MIT Press (1996)

    Google Scholar 

  24. Pak, J.S., Chen, M., Yu, P.S.: Using a Hash-Based Method with Transaction Trimming for Mining Association Rules. IEEE Transactions on Knowledge and Data Engineering 9(5), 813–825 (1997)

    Article  Google Scholar 

  25. Toivonen, H.: Discovery of Frequent Patterns in Large Data Collections. Phd thesis, Department of Computer Science, University of Helsinki, Finland (1996)

    Google Scholar 

  26. Savasere, A., Omiecinski, E., Navathe, S.: An Efficient Algorithm for Mining Association Rules in Large Databases. College of Computing, Georgia Institute of Technology, Technical Report No.: GIT–CC–95–04

    Google Scholar 

  27. Cochran, W.G.: Sampling Techniques. Wiley, Chichester (1977)

    MATH  Google Scholar 

  28. Aggarawal, C.C., Yu, P.S.: A New Frame Work for Itemset Generation. In: PODS 1998, pp. 18–24 (1998)

    Google Scholar 

  29. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An Enabling Techniques. Data Mining and Knowledge Discovery 6(4), 393–423 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sug, H. (2006). Using Reliable Short Rules to Avoid Unnecessary Tests in Decision Trees. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_57

Download citation

  • DOI: https://doi.org/10.1007/11925231_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics