Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DynamicWEB: Profile Correlation Using COBWEB

  • Conference paper
AI 2006: Advances in Artificial Intelligence (AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4304))

Included in the following conference series:

Abstract

Establishing relationships within a dataset is one of the core objectives of data mining. In this paper a method of correlating behaviour profiles in a continuous dataset is presented. The profiling problem which motivated the research is intrusion detection. The profiles are dynamic in nature, changing frequently, and are made up of many attributes. The paper describes a modified version of the COBWEB hierarchical conceptual clustering algorithm called DynamicWEB. DynamicWEB operates at runtime, keeping the profiles up to date, and in the correct location within the clustering tree. Further, as there are a number of attributes within the domain of interest, the tree also extends multi-dimensionally. This allows for multiple correlations to occur simultaneously, focusing on different attributes within the one profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fisher, D.H.: Knowledge Acquisition Via Incremental Conceptual Clustering. Mach. Learn. 2(2), 139–172 (1987)

    Google Scholar 

  2. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java implementations, p. 371. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  3. Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation. Artif. Intell. 40(1-3), 11–61 (1989)

    Article  Google Scholar 

  4. Newman, D.J., et al.: {UCI} Repository of machine learning databases, University of California, Irvine, Dept. of Information and Computer Sciences (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scanlan, J., Hartnett, J., Williams, R. (2006). DynamicWEB: Profile Correlation Using COBWEB. In: Sattar, A., Kang, Bh. (eds) AI 2006: Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science(), vol 4304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941439_122

Download citation

  • DOI: https://doi.org/10.1007/11941439_122

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49787-5

  • Online ISBN: 978-3-540-49788-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics