Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Single-Histogram Class Models for Image Segmentation

  • Conference paper
Computer Vision, Graphics and Image Processing

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4338))

Abstract

Histograms of visual words (or textons) have proved effective in tasks such as image classification and object class recognition. A common approach is to represent an object class by a set of histograms, each one corresponding to a training exemplar. Classification is then achieved by k-nearest neighbour search over the exemplars.

In this paper we introduce two novelties on this approach: (i) we show that new compact single histogram models estimated optimally from the entire training set achieve an equal or superior classification accuracy. The benefit of the single histograms is that they are much more efficient both in terms of memory and computational resources; and (ii) we show that bag of visual words histograms can provide an accurate pixel-wise segmentation of an image into object class regions. In this manner the compact models of visual object classes give simultaneous segmentation and recognition of image regions.

The approach is evaluated on the MSRC database [5] and it is shown that performance equals or is superior to previous publications on this database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Proc. ECCV, pp. 109–124 (2002)

    Google Scholar 

  2. Borenstein, E., Ullman, S.: Learning to segment. In: Proc. ECCV, vol. 3, pp. 315–328 (2004)

    Google Scholar 

  3. Bosch, A., Zisserman, A., Munoz, X.: Scene classification via pLSA. In: Proc. ECCV (2006)

    Google Scholar 

  4. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proc. ICCV, vol. 2, pp. 105–112 (2001)

    Google Scholar 

  5. Criminisi, A.: Microsoft research cambridge object recognition image database. version 1.0 (2004), http://research.microsoft.com/vision/cambridge/recognition/MSRC_ObjCategImageDatabase_v2.zip

  6. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

  7. Dhillon, I., Mallela, S., Kumar, R.: A divisive information-theoretic feature clustering algorithm for text classification. J. Machine Learning Research (2003)

    Google Scholar 

  8. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: Proc. CVPR (June 2005)

    Google Scholar 

  9. He, X., Zemel, R.S., Carreira-Perpiñán, M.Á.: Multiscale conditional random fields for image labeling. In: Proc. CVPR (2004)

    Google Scholar 

  10. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 43, 177–196 (2001)

    Article  Google Scholar 

  11. Kumar, M.P., Torr, P.H.S., Zisserman, A.: OBJ CUT. In: Proc. CVPR (2005)

    Google Scholar 

  12. Leibe, B., Schiele, B.: Interleaved object categorization and segmentation. In: BMVC 2003, vol. 2, pp. 264–271 (2003)

    Google Scholar 

  13. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  14. Quelhas, P., Monay, F., Odobez, J.-M., Gatica, D., Tuytelaars, T., Van Gool, L.: Modeling scenes with local descriptors and latent aspects. In: Proc. ICCV, pp. 883–890 (2005)

    Google Scholar 

  15. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. Proc. ACM SIGGRAPH 23(3), 309–314 (2004)

    Article  Google Scholar 

  16. Sharon, E., Brandt, A., Basri, R.: Segmentation and boundary detection using multiscale intensity measurements. In: Proc. CVPR, vol. 1, pp. 469–476. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  17. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: Joint Appearance, Shape and context Modeling for Multi-Class Object Recognition and Segmentation. In: Proc. ECCV (2006)

    Google Scholar 

  18. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: Proc. ICCV (2005)

    Google Scholar 

  19. Spellman, E., Vemuri, B.C., Rao, M.: Using the KL-center for Efficient and Accurate Retrieval of Distributions Arising from Texture Images. In: Proc. CVPR (2005)

    Google Scholar 

  20. Varma, M., Zisserman, A.: Texture classification: Are filter banks necessary? In: Proc. CVPR, June 2003, vol. 2, pp. 691–698 (2003)

    Google Scholar 

  21. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. IJCV 62(1–2), 61–81 (2005)

    Google Scholar 

  22. Winn, J., Criminisi, A., Minka., T.: Object Categorization by Learned Universal Visual Dictionary. In: Proc. ICCV (2005)

    Google Scholar 

  23. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classifcation of texture and object categories: An in-depth study. Technical Report RR-5737, INRIA Rhône-Alpes (November 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schroff, F., Criminisi, A., Zisserman, A. (2006). Single-Histogram Class Models for Image Segmentation. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_8

Download citation

  • DOI: https://doi.org/10.1007/11949619_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68301-8

  • Online ISBN: 978-3-540-68302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics