Abstract
Histograms of visual words (or textons) have proved effective in tasks such as image classification and object class recognition. A common approach is to represent an object class by a set of histograms, each one corresponding to a training exemplar. Classification is then achieved by k-nearest neighbour search over the exemplars.
In this paper we introduce two novelties on this approach: (i) we show that new compact single histogram models estimated optimally from the entire training set achieve an equal or superior classification accuracy. The benefit of the single histograms is that they are much more efficient both in terms of memory and computational resources; and (ii) we show that bag of visual words histograms can provide an accurate pixel-wise segmentation of an image into object class regions. In this manner the compact models of visual object classes give simultaneous segmentation and recognition of image regions.
The approach is evaluated on the MSRC database [5] and it is shown that performance equals or is superior to previous publications on this database.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Proc. ECCV, pp. 109–124 (2002)
Borenstein, E., Ullman, S.: Learning to segment. In: Proc. ECCV, vol. 3, pp. 315–328 (2004)
Bosch, A., Zisserman, A., Munoz, X.: Scene classification via pLSA. In: Proc. ECCV (2006)
Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proc. ICCV, vol. 2, pp. 105–112 (2001)
Criminisi, A.: Microsoft research cambridge object recognition image database. version 1.0 (2004), http://research.microsoft.com/vision/cambridge/recognition/MSRC_ObjCategImageDatabase_v2.zip
Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)
Dhillon, I., Mallela, S., Kumar, R.: A divisive information-theoretic feature clustering algorithm for text classification. J. Machine Learning Research (2003)
Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: Proc. CVPR (June 2005)
He, X., Zemel, R.S., Carreira-Perpiñán, M.Á.: Multiscale conditional random fields for image labeling. In: Proc. CVPR (2004)
Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 43, 177–196 (2001)
Kumar, M.P., Torr, P.H.S., Zisserman, A.: OBJ CUT. In: Proc. CVPR (2005)
Leibe, B., Schiele, B.: Interleaved object categorization and segmentation. In: BMVC 2003, vol. 2, pp. 264–271 (2003)
Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV 43(1), 29–44 (2001)
Quelhas, P., Monay, F., Odobez, J.-M., Gatica, D., Tuytelaars, T., Van Gool, L.: Modeling scenes with local descriptors and latent aspects. In: Proc. ICCV, pp. 883–890 (2005)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. Proc. ACM SIGGRAPH 23(3), 309–314 (2004)
Sharon, E., Brandt, A., Basri, R.: Segmentation and boundary detection using multiscale intensity measurements. In: Proc. CVPR, vol. 1, pp. 469–476. IEEE Computer Society Press, Los Alamitos (2001)
Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: Joint Appearance, Shape and context Modeling for Multi-Class Object Recognition and Segmentation. In: Proc. ECCV (2006)
Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: Proc. ICCV (2005)
Spellman, E., Vemuri, B.C., Rao, M.: Using the KL-center for Efficient and Accurate Retrieval of Distributions Arising from Texture Images. In: Proc. CVPR (2005)
Varma, M., Zisserman, A.: Texture classification: Are filter banks necessary? In: Proc. CVPR, June 2003, vol. 2, pp. 691–698 (2003)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. IJCV 62(1–2), 61–81 (2005)
Winn, J., Criminisi, A., Minka., T.: Object Categorization by Learned Universal Visual Dictionary. In: Proc. ICCV (2005)
Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classifcation of texture and object categories: An in-depth study. Technical Report RR-5737, INRIA Rhône-Alpes (November 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schroff, F., Criminisi, A., Zisserman, A. (2006). Single-Histogram Class Models for Image Segmentation. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_8
Download citation
DOI: https://doi.org/10.1007/11949619_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68301-8
Online ISBN: 978-3-540-68302-5
eBook Packages: Computer ScienceComputer Science (R0)