Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extracting Discriminative Patterns from Graph Structured Data Using Constrained Search

  • Conference paper
Advances in Knowledge Acquisition and Management (PKAW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4303))

Included in the following conference series:

  • 470 Accesses

Abstract

A graph mining method, Chunkingless Graph-Based Induction (Cl-GBI), finds typical patterns appearing in graph-structured data by the operation called chunkingless pairwise expansion, or pseudo-chunking which generates pseudo-nodes from selected pairs of nodes in the data. Cl-GBI enables to extract overlapping subgraphs, but it requires more time and space complexities than the older version GBI that employs real chunking. Thus, it happens that Cl-GBI cannot extract patterns that need be large enough to describe characteristics of data within a limited time and given computational resources. In such a case, extracted patterns maynot be so interesting for domain experts. To mine more discriminative patterns which cannot be extracted by the current Cl-GBI, we introduce a search algorithm in which patterns to be searched are guided by domain knowledge or interests of domain experts. We further experimentally show that the proposed method can efficiently extract more discriminative patterns using a real world dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cook, D.J., Holder, L.B.: Substructure Discovery Using Minimum Description Length and Background Knowledge. Artificial Intelligence Research 1, 231–255 (1994)

    Google Scholar 

  2. Fortin, S.: The Graph Isomorphism Problem. Technical Report TR96-20, Department of Computer Science, University of Alberta (1996).

    Google Scholar 

  3. Geamsakul, W., Yoshida, T., Ohara, K., Motoda, H., Yokoi, H., Takabayashi, K.: Constructing a Decision Tree for Graph-Structured Data and its Applications. Fundamenta Informaticae 66(1-2), 131–160 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Inokuchi, A., Washio, T., Motoda, H.: Complete Mining of Frequent Patterns from Graphs: Mining Graph Data. Machine Learning 50(3), 321–354 (2003)

    Article  MATH  Google Scholar 

  5. Kuramochi, M., Karypis, G.: An Efficient Algorithm for Discovering Frequent Subgraphs. IEEE Trans. Knowledge and Data Engineering 16(9), 1038–1051 (2004)

    Article  Google Scholar 

  6. Matsuda, T., Motoda, H., Yoshida, T., Washio, T.: Mining Patterns from Structured Data by Beam-Wise Graph-Based Induction. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 422–429. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Motoyama, S., Ichise, R., Numao, M.: Knowledge Discovery from Inconstant Time Series Data (in Japanese). JSAI Technical Report, SIG-KBS-A405, pp. 27–32 (2005)

    Google Scholar 

  8. Nguyen, P.C., Ohara, K., Motoda, H., Washio, T.: Cl-GBI: A Novel Approach for Extracting Typical Patterns from Graph-Structured Data. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 639–649. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Nguyen, P.C., Ohara, K., Mogi, A., Motoda, H., Washio, T.: Constructing Decision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 390–399. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  11. Sato, Y., Hatazawa, M., Ohsaki, M., Yokoi, H., Yamaguchi, T.: A Rule Discovery Support System in Chronic Hepatitis Datasets. In: First International Conference on Global Research and Education (Inter Academia 2002), pp. 140–143 (2002)

    Google Scholar 

  12. Yan, X., Han, J.: gSpan: Graph-Based Structure Pattern Mining. In: Proc. of the 2nd IEEE International Conference on Data Mining (ICDM 2002), pp. 721–724 (2002)

    Google Scholar 

  13. Yoshida, K., Motoda, H.: CLIP: Concept Learning from Inference Patterns. Artificial Intelligence 75(1), 63–92 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takabayashi, K., Nguyen, P.C., Ohara, K., Motoda, H., Washio, T. (2006). Extracting Discriminative Patterns from Graph Structured Data Using Constrained Search. In: Hoffmann, A., Kang, Bh., Richards, D., Tsumoto, S. (eds) Advances in Knowledge Acquisition and Management. PKAW 2006. Lecture Notes in Computer Science(), vol 4303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11961239_6

Download citation

  • DOI: https://doi.org/10.1007/11961239_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68955-3

  • Online ISBN: 978-3-540-68957-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics