Preview
Unable to display preview. Download preview PDF.
References
K. E. Atkinson, Numerical Solution of Eigenvalue Problem for Compact Integral Operators, TAMS 1967.
E. K. Blum, Numerical Analysis and Computation (Ch. 5, 12), Addison-Wesley, 1972.
—, A Convergent Gradient Procedure in pre-Hilbert Spaces, Pacific J. Math., 18, 1 (1966).
—, Stationary points of functionals in pre-Hilbert spaces, J. Comp. Syst. Sci Apr. 67.
J. W. Daniel, The Approximate Minimization of Functionals, Prentice-Hall, 1971.
A. A. Goldstein, Constructive Real Analysis, Harper 67.
E. S. Levitin and B. T. Polyak, Constrained Minimization Methods, Zh. vychisl. Mat. mat. Fig., 1966 (Comp. Math and Math. Phys).
M. Z. Nashed, Differentiability and Related Properties of Nonlinear Operators — in Nonlinear Functional Analysis and Applications, ed. L. B. Rall Ac. Press 1971.
S. F. McCormick, A. General Approach to One-step Iterative Methods with Application to Eigenvalue Problems, J. Comp. and Syst. Sci. Aug. 72.
E. K. Blum and G. Rodrigue, Solution of Eigenvalue Problems in Hilbert Spaces by a Gradient Method, USC Math. Dept. Prepring Apr. 72.
H. Wielandt, Error bounds for Eigenvalues of Symmetric Integral Equations Proc. AMS Symp. Applied Math., C, 1956.
G. Rodrigue, A Gradient Method for the Matrix Eigenvalue Problem Ax = λ Bx Kent State U. Math. Dept. Dec. 72.
S. McCormick and G. Rodrigue, A Class of Gradient Methods for Least Squares Problems for Operators with Closed and Nonclosed Range, Claremont U. and U.S.C. Report
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1973 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blum, E.K. (1973). Gradient techniques for computation of stationary points. In: Conti, R., Ruberti, A. (eds) 5th Conference on Optimization Techniques Part I. Optimization Techniques 1973. Lecture Notes in Computer Science, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-06583-0_50
Download citation
DOI: https://doi.org/10.1007/3-540-06583-0_50
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-06583-8
Online ISBN: 978-3-540-37903-4
eBook Packages: Springer Book Archive