Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gradient techniques for computation of stationary points

  • Numerical Methods
  • Conference paper
  • First Online:
5th Conference on Optimization Techniques Part I (Optimization Techniques 1973)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3))

Included in the following conference series:

  • 1496 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. E. Atkinson, Numerical Solution of Eigenvalue Problem for Compact Integral Operators, TAMS 1967.

    Google Scholar 

  2. E. K. Blum, Numerical Analysis and Computation (Ch. 5, 12), Addison-Wesley, 1972.

    Google Scholar 

  3. —, A Convergent Gradient Procedure in pre-Hilbert Spaces, Pacific J. Math., 18, 1 (1966).

    Google Scholar 

  4. —, Stationary points of functionals in pre-Hilbert spaces, J. Comp. Syst. Sci Apr. 67.

    Google Scholar 

  5. J. W. Daniel, The Approximate Minimization of Functionals, Prentice-Hall, 1971.

    Google Scholar 

  6. A. A. Goldstein, Constructive Real Analysis, Harper 67.

    Google Scholar 

  7. E. S. Levitin and B. T. Polyak, Constrained Minimization Methods, Zh. vychisl. Mat. mat. Fig., 1966 (Comp. Math and Math. Phys).

    Google Scholar 

  8. M. Z. Nashed, Differentiability and Related Properties of Nonlinear Operators — in Nonlinear Functional Analysis and Applications, ed. L. B. Rall Ac. Press 1971.

    Google Scholar 

  9. S. F. McCormick, A. General Approach to One-step Iterative Methods with Application to Eigenvalue Problems, J. Comp. and Syst. Sci. Aug. 72.

    Google Scholar 

  10. E. K. Blum and G. Rodrigue, Solution of Eigenvalue Problems in Hilbert Spaces by a Gradient Method, USC Math. Dept. Prepring Apr. 72.

    Google Scholar 

  11. H. Wielandt, Error bounds for Eigenvalues of Symmetric Integral Equations Proc. AMS Symp. Applied Math., C, 1956.

    Google Scholar 

  12. G. Rodrigue, A Gradient Method for the Matrix Eigenvalue Problem Ax = λ Bx Kent State U. Math. Dept. Dec. 72.

    Google Scholar 

  13. S. McCormick and G. Rodrigue, A Class of Gradient Methods for Least Squares Problems for Operators with Closed and Nonclosed Range, Claremont U. and U.S.C. Report

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Conti A. Ruberti

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blum, E.K. (1973). Gradient techniques for computation of stationary points. In: Conti, R., Ruberti, A. (eds) 5th Conference on Optimization Techniques Part I. Optimization Techniques 1973. Lecture Notes in Computer Science, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-06583-0_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-06583-0_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06583-8

  • Online ISBN: 978-3-540-37903-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics