Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The complexity of finding minimum-length generator sequences

Extended abstract

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1984)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 172))

Included in the following conference series:

  • 157 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beriekamp, E.R., Conway, J.H. and Guy, R.K. "Winning Ways. Vol. 2 — Games in Particular". Academic Press, 1982.

    Google Scholar 

  2. Cayley, A. Note on the Theory of Permutations. Philosophical Magazine 34 (1849), pp. 527–529.

    Google Scholar 

  3. Driscoll, J.R. and Furst, M.L. On the Diameter of Permutation Groups. Proc. 15th ACM Symposium on Theory of Computing, 1983, pp. 152–160.

    Google Scholar 

  4. Even, S. and Goldreich, O. The Minimum-length Generator Sequence Problem is NP-hard. J. Algorithms 2 (1981), pp. 311–313.

    Google Scholar 

  5. Furst, M., Hopcroft, J. and Luks, E. Polynomial-time Algorithms for Permutation Groups. Proc. 21st IEEE Symposium on Foundations of Computer Science. IEEE. 1981, pp. 36–41.

    Google Scholar 

  6. Garey, M.R. and Johnson, D.S. "Computers and Intractability — A Guide to the Theory of NP-Completeness". Freeman, San Francisco, 1979.

    Google Scholar 

  7. Hall, M. "The Theory of Groups". Macmilian, New York, 1959.

    Google Scholar 

  8. Hardy, G.H. and Wright, E.M. "An Introduction to the Theory of Numbers". Oxford, 1938.

    Google Scholar 

  9. Hopcroft, J.E. and Ullman, J.D. "Introduction to Automata Theory, Languages and Computation". Addison-Wesley, 1979.

    Google Scholar 

  10. Jerrum, M.R. A Compact Representation for Permutation Groups. Proc. 23rd IEEE Symposium on Foundations of Computer Science. 1982, pp. 126–133.

    Google Scholar 

  11. Jerrum, M.R. The Complexity of Finding Minimum-length Generator Sequences. Internal Report CSR-139-83. Department of Computer Science. University of Edinburgh, July, 1983. (Submitted to Theoretical Computer Science).

    Google Scholar 

  12. Knuth, D.E. The Art of Computer Programming. Volume 3: "Sorting and Searching". Addison-Wesley, 1973.

    Google Scholar 

  13. Savitch, W.J. Relationships between Nondeterministic and Deterministic Tape Complexities. J. Computer and Systems Sciences 4 (1970), pp. 177–192.

    Google Scholar 

  14. Sims, C.C. Computational Methods in the Study of Permutation Groups. In "Computational Problems in Abstract Algebra", Leech, J. (Ed.), Pergamon Press, 1970, pp. 169–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan Paredaens

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jerrum, M. (1984). The complexity of finding minimum-length generator sequences. In: Paredaens, J. (eds) Automata, Languages and Programming. ICALP 1984. Lecture Notes in Computer Science, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-13345-3_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-13345-3_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13345-2

  • Online ISBN: 978-3-540-38886-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics