Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Numerical Simulation of the Free Fall Problem

  • Conference paper
Modeling, Simulation and Optimization of Complex Processes

Summary

The numerical simulation of the free fall of a solid body in a viscous fluid is a challenging task since it requires computational domains which usually need to be several order of magnitude larger than the solid body in order to avoid the influence of artificial boundaries. Toward an optimal mesh design in that context, we propose a method based on the weighted a posteriori error estimation of the finite element approximation of the fluid/body motion. A key ingredient for the proposed approach is the reformulation of the conservation and kinetic equations in the solid frame as well as the implicit treatment of the hydrodynamic forces and torque acting on the solid body in the weak formulation. Informations given by the solution of an adequate dual problem allow to control the discretization error of given functionals. The analysis encompasses the control of the the hydrodynamic force and torque on the body. Numerical experiments for the two dimensional sedimentation problem validate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. 1–102. A. Iserles, 2001.

    Google Scholar 

  2. S. Bönisch, V. Heuveline, and P. Wittwer. Adaptive boundary conditions for exterior flow problems. Technical Report 2003-02, SFB 359, Universität Heidelberg, 2003.

    Google Scholar 

  3. S.C. Brenner and R.L. Scott. The mathematical theory of finite element methods. Springer, Berlin-Heidelberg-New York, 1994.

    MATH  Google Scholar 

  4. F. Brezzi and R. Falk. Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal., 28(3):581–590, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. G.P. Galdi. On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications. Handbook of Mathematical Fluid Mechanics, S. Friedlander and D. Serre Eds, Elsevier, 2001.

    Google Scholar 

  6. G.P. Galdi and A. Vaidya. Translational steady fall of symmetric bodies in a Navier-Stokes liquid, with application to particle sedimentation. J. Math. Fluid Mech., 3:183–211, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Giles, M. Larson, M. Levenstam, and E. SĂĽli. Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow. Technical Report NA-97/06, Oxford University Computing Laboratory, 1997.

    Google Scholar 

  8. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, and J. Periaux. A distributed Lagrange multiplier/fictitious domain method for flow around moving rigid bodies: Application to particulate flow. Int. J. Numer. Meth. Fluids, 30:1043–1066, 1999.

    Article  MATH  Google Scholar 

  9. V. Heuveline and R. Rannacher. The steady free fall problem. part 1: Numerical computation using adaptive finite element. in preparation.

    Google Scholar 

  10. P. Hood and C. Taylor. A numerical solution of the navier-stokes equations using the finite element techniques. Comp. and Fluids, 1:73–100, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  11. H.H. Hu. Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow, 22:335–352, 1996.

    Article  MATH  Google Scholar 

  12. H.H. Hu, D.D. Joseph, and M.J. Crochet. Direct simulation of fluid particle motions. Theor. Comp. Fluid Dyn., 3:285–306, 1992.

    Article  MATH  Google Scholar 

  13. S. Nevcasová. Asymptotic properties of the steady fall of a body in viscous fluids. Technical Report 149/2002, Academy of Sciences of the Czech Republic, Mathematical Institute, 2002.

    Google Scholar 

  14. D. Serre. Chute libre d'un solide dans un fluide visqueux incompressible. existence. Jap. J. Appl. Math, 4(1):99–110, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  15. S.O. Unverdi and G. Tryggvason. Computations of multi-fluid flows. Physica D, 60:70–83, 1992.

    Article  MATH  Google Scholar 

  16. P. Wittwer. On the structure of stationary solutions of the Navier-Stokes equations. Commun. Math. Phys., 226:455–474, 2002.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bönisch, S., Heuveline, V., Rannacher, R. (2005). On the Numerical Simulation of the Free Fall Problem. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_4

Download citation

Publish with us

Policies and ethics