Abstract
In this paper a new autotuning fuzzy PID control method for SISO and MIMO systems is proposed. The fuzzy autotune procedure adjusts on-line the parameters of a conventional PID controller located in the forward loop of the process. Fuzzy rules, employed to determine the set of PID gains, are based on the representation of human expertise on how can be the behaviour of gain and phase margins of a control system to efficiently compensating the system errors. The proposed control scheme offers advantages over the conventional fuzzy controller such as: i) a systematic design is attained in both SISO and MIMO cases; ii) it is necessary only one rule base for all loops; iii) the tuning mechanism is simple and control operators can easily understand how it works; and iv) it is completely autotuned, requiring only one relay feedback experiment per loop. Simulation examples and a practical essay are assessing the effectiveness of the proposed control algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almeida, O. M., Coelho, A. A. R.; (2001). Controlador PID com Escalonamento Nebuloso dos Ganhos: Auto-Sintonia, Análise e Implementação, V Simpósio Brasileiro de Automação Inteligente – V SBAI
Almeida, O. M., Coelho, A. A. R.; (2002). A Fuzzy Logic Method for Autotuning a PID Controller: SISO and MIMO Systems, 15th IFAC World Congress on Automatic Control (to appear).
Altrock, C and Gebhardt, J. (1996). Recent successful fuzzy logic applications in industrial automation, Proc. of Fifth IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1845–1851.
Bonissone, P. P. (1994). Fuzzy logic controllers: an industrial reality, Computational Intelligence: Imitating Life, Zurada, J.M.; Marks II, R.J.; Robinson, CJ. (eds.), Piscataway, NJ, IEEE Press, pp. 316–327.
Hu, B.; Mann, G. K. I. and Gosine, R. G. (1999). New methodology for analytical and optimal design of fuzzy PID controllers, IEEE Transaction on Fuzzy Systems vol. 7, pp. 521–539.
Kim, E.; Lee, H. and Park, M. (2000) Limit-cycle prediction of a fuzzy control system based on describing function method, IEEE Transaction on Fuzzy Systems, vol. 8, pp. 11–22.
Qin, Y.; Jia, L. -M. and Zhang, X. -D. (1998). Automation of combustion process for coke oven using multivariable fuzzy control technique, IEEE World Congress on Computational Intelligence, Proc. of FUZZY-IEEE, Anchorage, Alaska, USA, pp. 606–610.
Luyben, W. L. (1990). Process modeling simulation, and control for chemical engineers, McGraw-Hill, Inc.
Nie, J. (1997). Fuzzy control of multivariable nonlinear servomechanisms with explicit decoupling scheme, IEEE Transactions on Fuzzy Systems, vol. 5, pp. 304–311.
Shen, S. –H. and Yu, C. –C. (1994). Use of relay-feedback test for automatic tuning of multivariable systems, AIChE Journal, vol. 40, pp. 627–646.
Shiu, S.-J. and Hwang, S., -H. (1998). Sequential design method for multivariable decoupling and multiloop PID controllers, Ind. Eng. Chem. Process Des. Dev., vol. 37, pp. 107–119.
Ying, H.; Siler, W. and Buckley, J. J. (1990). Fuzzy control theory : a nonlinear case, Automatica, vol. 23, pp. 513–520.
Wang, Y. G. and Shao, H. H. (1999). PID tuning for improving performance, IEEE Transactions on Control Systems Technology, vol. 7, pp. 457–465.
Yager, R. R. and Filev, D. P. (1994). Essentials of fuzzy modeling and control, John Wiley & Sons, Inc., New York, N.Y.
Wood, R. K. and Berry, M. W. (1973). Terminal composition control of a binary destination column, Chem. Eng. Sci, vol. 28, pp. 1707–1717.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer
About this paper
Cite this paper
Almeida, O.M., Reis, L.L.N., Bezerra, L.D.S., Lima, S.E.U. (2006). A MIMO Fuzzy Logic Autotuning PID Controller: Method and Application. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds) Applied Soft Computing Technologies: The Challenge of Complexity. Advances in Soft Computing, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31662-0_44
Download citation
DOI: https://doi.org/10.1007/3-540-31662-0_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31649-7
Online ISBN: 978-3-540-31662-6
eBook Packages: EngineeringEngineering (R0)