Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model

  • Chapter
Multi-Objective Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 16))

  • 3154 Accesses

Abstract

This chapter discusses the interpretability of Takagi-Sugeno (TS) fuzzy systems. A new TS fuzzy model, whose membership functions are characterized by linguistic modifiers, is presented. The tradeoff between global approximation and local model interpretation has been achieved by minimizing a multiple objective performance measure. In the proposed model, the local models match the global model well and the erratic behaviors of local models are remedied effectively. Furthermore, the transparency of partitioning of input space has been improved during parameter adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jang JSR, Sun CT, Mizutani E (1997) Neuro Fuzzy and Soft Computing. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  2. Guillaume S (2001) Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans. on Fuzzy Systems, 9:426–443.

    Article  Google Scholar 

  3. Setnes M, Babuska R and Verbruggen HB (1998) Rule-based modeling: precision and transparency. IEEE Trans. on Systems, Man and Cybernetics-Part C, 28:165–169.

    Article  Google Scholar 

  4. Shen Q and Marin-Blazquez JG (2002) Microtuning of membership functions: accuracy vs.interpretability. Proc. of IEEE Int. Conf. on Fuzzy Systems (FUZZIEEE' 02):168–173, Honolulu, Hawai, USA.

    Google Scholar 

  5. Guillaume S and Charnomordic B (2004) Generating an interpretable family of fuzzy partitions from data. IEEE Trans. on Fuzzy Systems,12:324–335.

    Article  Google Scholar 

  6. Mucientes M and Casillas J (2004) Obtaining a fuzzy controller with high interpretability in mobile robots navigation, Proc. of IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE'04):1637–1642, Budapest, Hungary, 2004.

    Google Scholar 

  7. Drobics M, Bodenhofer U and Klement EP (2003) FS-FOIL: an inductive learning method for extracting interpretable fuzzy descriptions, Int. Journal of Approximate Reasoning,32:131–152.

    Article  MATH  Google Scholar 

  8. Babuska R and Verbruggen H (2003) Neuro-fuzzy methods for nonlinear system identification, Annual Reviews in Control, 27:73–85.

    Article  Google Scholar 

  9. de Oliveira JV (1999) Semantic constraints for membership function optimization, IEEE Trans.on Systems, Man and Cybernetics-Part A,29:128–138.

    Article  Google Scholar 

  10. Jin Y (2000) Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement, IEEE Trans. on Fuzzy Systems, 8:212–221.

    Article  Google Scholar 

  11. Penna-Reyes CA and Sipper M (2003) Fuzzy CoCo: balancing accuracy and interpretability of fuzzy models by means of coevolution. in J. Casillas, O. Cordon, F. Herrera, L Magdalena, (eds.) Interpretability issues in Fuzzy Modelling, Studies in Fuzziness and Soft Computing, Physica-Verlag.

    Google Scholar 

  12. Mikut R, Jäkel L and Gröll L (2005) Interpretability issues in data-based learning of fuzzy systems, Fuzzy Sets and Systems, 150:179–197.

    Article  MATH  MathSciNet  Google Scholar 

  13. Paiva RP and Dourado A (2004) Interpretability and learning in neuro-fuzzy systems, Fuzzy Sets and Systems, 147:17–38.

    Article  MATH  MathSciNet  Google Scholar 

  14. Jimenez F, Sanchez G, Gomez-Skarmeta AF, Roubos H and Babuska R (2002) Fuzzy modeling with multi-objective neuro-evolutionary algorithms, Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics (IEEE SMC'02), Yasmine Hammamet, Tunisia.

    Google Scholar 

  15. Jin Y, von Seelen W and Sendhoff B (1999) On generating FC3(flexible, complete, consistent and compact) fuzzy rule systems from data using evolution strategies, IEEE Trans.on Systems, Man and Cybernetics, Part B: Cybernetics, 29:829–845.

    Google Scholar 

  16. Castellano G, Fanelli AM and Mencar C (2002) A neuro-fuzzy network to generate human-understandable knowledge from data, Cognitive Systems Research, 3:125–144.

    Article  Google Scholar 

  17. Wang H, Kwong S, Jin Y, Wei W and Man KF (2005) Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction, Fuzzy Sets and Systems, 149:149–186.

    Article  MATH  MathSciNet  Google Scholar 

  18. Delgado MR, Von Zuben F and Gomide F (2002) Multi-objective decision making: towards improvement of accuracy, interpretability and design autonomy in hierarchical genetic fuzzy systems, Proc. of IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE'02): 1222–1227, Honolulu, Hawai, USA.

    Google Scholar 

  19. Gan Q and Harris CJ (1999) Fuzzy local linearization and local basis function expansion in nonlinear system modeling, IEEE Trans. on Systems, Man and Cybernetics-Part B., 29:559–565.

    Article  Google Scholar 

  20. Yen J, Wang L and Gillespie CW (1998) Improving the interpretability of TSK fuzzy models by combining global learning and local learning, IEEE Trans. on Fuzzy Systems, 6:530–537.

    Article  Google Scholar 

  21. Johansen TA and Babuska R (2003) Multi-objective identification of Takagi- Sugeno fuzzy models, IEEE Trans. on Fuzzy Systems, 11:847–860.

    Article  Google Scholar 

  22. Roubos H and Setnes M (2001) Compact and transparent fuzzy models and classifiers through iterative complexity reduction, IEEE Trans. on Fuzzy Systems, 9:516–524.

    Article  Google Scholar 

  23. Gomez-Skarmeta F and Jimenez F (1999) Fuzzy modeling with hybrid systems, Fuzzy Sets and Systems, 104:199–208.

    Article  Google Scholar 

  24. Hoppner F and Klawonn F (2001) A new approach to fuzzy partitioning, Proc. of the Joint 9 th IFSA Congress and 20 th NAFIPS Int. Conf.:1419–1424, Vancouver, Canada.

    Google Scholar 

  25. Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum.

    MATH  Google Scholar 

  26. Gath I and Geva AB (1989) Unsupervised optimal fuzzy clustering, IEEE Trans. on Pattern Analysis and Machine Intelligence, 11:773–781.

    Article  Google Scholar 

  27. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. on Systems, Man and Cybernetics, 23:665–685.

    Article  Google Scholar 

  28. Takagi T and Sugeno M (1985) Fuzzy identification of systems and its applications to modelling and control, IEEE Trans. on Systems, Man and Cybernetics, 15:116–132.

    MATH  Google Scholar 

  29. MaGinnity S and Irwin GW (1996) Nonlinear state estimation using fuzzy local linear models, Int. J. of System Science, 28:643–656.

    Google Scholar 

  30. Gan Q and Harris CJ (1999) Neurofuzzy local linearisation for model identification and state estimation of unknown nonlinear processes Int. J. of Intelligent Control and Systems, 3:389–407.

    Google Scholar 

  31. Fink A, nelles Fink O and Isermann R (2002) Nonlinear internal model control for MISO systems based on local linear neuro-fuzzy models, Proc. of the 15 th IFAC World Congress, Barcelona, Spain.

    Google Scholar 

  32. Statnikov RB and Matusov JB (1995) Multicriteria Optimization and Engineering, New York, Chapman and Hall.

    Google Scholar 

  33. Marler RT and Arora JS (2004) Survey of multi-objective optimization methods for engineering, Structural Multidisciplinary Optimization, 26:369–395.

    Article  MathSciNet  Google Scholar 

  34. Salukvadze ME (1971) On the optimization of vector functionals, 1. Programming of optimal trajectories, 2. Analytic construction of optimal controls, Automation and Remote Control, 31 (in Russian).

    Google Scholar 

  35. Gomez-Skameta A, Jimenez F and Ibanez J (1998) Pareto-optimality in fuzzy modeling, Proc. of the 6 th European Congress on Intelligent Techniques and soft Computing, EUFIT'98:694–700, Aachen, Gemany, Sept.

    Google Scholar 

  36. Zadeh LA(1963) Optimality and non-scalar-valued performance criteria, IEEE Trans. on Automatic Control, 8:59–60.

    Article  Google Scholar 

  37. Chankong V and Haimes YY (1983) Multiobjective Decision Making Theory and Methodology, New York, Elsevier Science Publishing.

    MATH  Google Scholar 

  38. Zeleny M (1982) Multiple Criteria Decision Making, New York, McGraw Hill.

    MATH  Google Scholar 

  39. Yager RR (1979) On the measure of fuzziness and negation part I: Membership in the unit interval, Int. J. of Gen. Syst.,5:221–229.

    MATH  MathSciNet  Google Scholar 

  40. Zhou SM and Gan JQ (2004) An unsupervised kernel based fuzzy c-means clustering algorithm with kernel normalization, Int. J. of Computational Intelligence and Applications, 4:355–373.

    Article  Google Scholar 

  41. Narendra KS and Parthsarathy K (1990) Identification and control of dynamical systems using neural networks, IEEE Trans. on Neural Networks, 1:4–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Zhou, SM., Gan, J.Q. (2006). Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model. In: Jin, Y. (eds) Multi-Objective Machine Learning. Studies in Computational Intelligence, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33019-4_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-33019-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30676-4

  • Online ISBN: 978-3-540-33019-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics