Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Simple Linguistic Fuzzy Models by Means of the Weighted COR Methodology

  • Conference paper
  • First Online:
Advances in Artificial Intelligence — IBERAMIA 2002 (IBERAMIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2527))

Included in the following conference series:

Abstract

In this work we extendthe Cooperative Rules learning methodology to improve simple linguistic fuzzy models, including the learning of rule weights within the rule cooperation paradigm. Considering these kinds of techniques could result in important improvements of the system accuracy, maintaining the interpretability to an acceptable level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcalá, R., Casillas, J., Cordón, O., Herrera, F.: Improvement to the cooperative rules methodology by using the ant colony system algorithm. Mathware & Soft Computing 8:3 (2001) 321–335

    MATH  Google Scholar 

  2. Casillas, J., Cordón, O., Herrera, F.: COR: A methodology to improve ad hoc datadriven linguistic rule learning methods by inducing cooperation among rules. IEEE Transactions on Systems, Man, andCyb ernetics-Part B: Cybernetics (2002). To appear

    Google Scholar 

  3. Casillas, J., Cordón, O., Herrera, F.: Different approaches to induce cooperation in fuzzy linguistic models under the COR methodology. In: Bouchon-Meunier, B., Gutiérrez-Ríos, J., Magdalena, L., Yager, R.R. (Eds.): Techniques for Constructing Intelligent Systems. Springer-Verlag, Heidelberg, Germany (2002)

    Google Scholar 

  4. Cho, J.S., Park, D.J.: Novel fuzzy logic control basedon weighting of partially inconsistent rules using neural network. Journal of Intelligent Fuzzy Systems 8 (2000) 99–110

    Google Scholar 

  5. Cordón, O., Herrera, F., Sánchez, L.: Solving electrical distribution problems using hybridev olutionary data analysis techniques. AppliedIn telligence 10 (1999) 5–24

    Article  Google Scholar 

  6. Cordón, O., Herrera, F.: A proposal for improving the accuracy of linguistic modeling. IEEE Transactions on Fuzzy Systems 8:4 (2000) 335–344

    Article  Google Scholar 

  7. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Transactions on Fuzzy Systems 9:3 (1995) 260–270

    Article  Google Scholar 

  8. Pal, N.R., Pal, K.: Handling of inconsistent rules with an extended model of fuzzy reasoning. Journal of Intelligent Fuzzy Systems 7 (1999) 55–73

    Google Scholar 

  9. Pardalos, P.M., Resende, M.G.C.: Handbook of applied optimization. Oxford University Press, NY (2002)

    Google Scholar 

  10. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, andCyb ernetics 22 (1992) 1414–1427

    Article  MathSciNet  Google Scholar 

  11. Yu, W., Bien, Z.: Design of fuzzy logic controller with inconsistent rule base. Journal of Intelligent Fuzzy Systems 2 (1994) 147–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alcalá, R., Casillas, J., Cordón, O., Herrera, F. (2002). Improving Simple Linguistic Fuzzy Models by Means of the Weighted COR Methodology. In: Garijo, F.J., Riquelme, J.C., Toro, M. (eds) Advances in Artificial Intelligence — IBERAMIA 2002. IBERAMIA 2002. Lecture Notes in Computer Science(), vol 2527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36131-6_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-36131-6_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00131-7

  • Online ISBN: 978-3-540-36131-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics