Abstract
[2] is one of the great mathematical knowledge repositories. Nevertheless, it was written for a different era, and for human readership. In this paper, we describe the sorts of knowledge in one chapter (elementary transcendental functions) and the difficulties in making this sort of knowledge formal. This makes us ask questions about the nature of a Mathematical Knowledge Repository, and whether a database is enough, or whether more “intelligence” is required.
The author was partially supported by the European OpenMath Thematic Network and the Mathematical Knowledge Management Network.
The author recently had a problem with this, having set an examination question “if ∞ is algebraic and β is transcendental, is ∞β always transcendental”?One students answered in the negative, quoting the case of ∞ = 0.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbott, J. A., Díaz, A. & Sutor, R. S, OpenMath: A Protocol for the Exchange of Mathematical Information. SIGSAM Bulletin 30 (1996) 1 pp. 21–24.
Abramowitz, M. & Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Government Printing Office, 1964. 10th Printing December 1972.
Aslaksen, H., Can your computer do complex analysis?. In: Computer Algebra Systems: A Practical Guide (M. Wester ed.), John Wiley, 1999. http://www.math.nus.edu.sg/aslaksen/helmerpub.shtml.
Beeson, M. & Wiedijk, F., The Meaning of Infinity in Calculus and Computer Algebra Systems. Artificial Intelligence, Automated Reasoning, and Symbolic Computation (ed. J. Calmet et al.), Springer Lecture Notes in Artificial Intelligence 2385, Springer-Verlag, 2002, pp. 246–258.
Bradford, R. J. & Davenport, J. H., Towards Better Simplification of Elementary Functions. Proc. ISSAC 2002 (ed. T. Mora), ACM Press, New York, 2002, pp. 15–22.
Bradford, R. J., Corless, R. M., Davenport, J. H., Jeffrey, D. J. & Watt, S. M., Reasoning about the Elementary Functions of Complex Analysis. Annals of Mathematics and Artificial Intelligence36 (2002) pp. 303–318.
de Bruijn, N., The Mathematical Vernacular, a language for mathematics with type sets. Proc. Workshop on Programming Logic, Chalmers U., May 1987.
Corless, R. M., Davenport, J. H., Jeffrey, D. J., Litt, G. & Watt, S. M., Reasoning about the Elementary Functions of Complex Analysis. Artificial Intelligence and Symbolic Computation (ed. John A. Campbell & Eugenio Roanes-Lozano), Springer Lecture Notes in Artificial Intelligence Vol. 1930, Springer-Verlag 2001, pp. 115–126.
Corless, R. M., Davenport, J. H., Jeffrey, D. J. & Watt, S. M., “According to Abramowitz and Stegun”. SIGSAM Bulletin34 (2000) 2, pp. 58–65.
Corless, R. M. & Jeffrey, D. J., The Unwinding Number. SIGSAM Bulletin 30 (1996) 2, pp. 28-35.
Davenport, J. H., Table Errata-Abramowitz & Stegun. To appear in Math. Comp.
Davenport, J. H., “According to Abramowitz and Stegun” II. OpenMath Thematic Network Deliverable ???, 2002. http://www.monet.nag.co.uk/???/
Dewar, M. C., OpenMath: An Overview. ACM SIGSAM Bulletin34 (2000) 2 pp. 2–5.
Kahan, W., Branch Cuts for Complex Elementary Functions. The State of Art in Numerical Analysis (ed. A. Iserles & M. J. D. Powell), Clarendon Press, Oxford, 1987, pp. 165–211.
Rich, A. D. and Jeffrey, D. J., Function evaluation on branch cuts. SIGSAM Bulletin 116(1996).
Stoutemyer, D., Crimes and Misdemeanors in the Computer Algebra Trade. Notices AMS38 (1991) pp. 779–785.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Davenport, J.H. (2003). MKM from Book to Computer: A Case Study. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds) Mathematical Knowledge Management. MKM 2003. Lecture Notes in Computer Science, vol 2594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36469-2_2
Download citation
DOI: https://doi.org/10.1007/3-540-36469-2_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00568-1
Online ISBN: 978-3-540-36469-6
eBook Packages: Springer Book Archive