Abstract
This work presents a comparison of decision making criteria and optimization methods for active sensing in robotics. Active sensing incorporates the following aspects: (i ) where to position sensors, and (ii ) how to make decisions for next actions, in order to maximize information gain and minimize costs. We concentrate on the second aspect: “Where should the robot move at the next time step?”. Pros and cons of the most often used statistical decision making strategies are discussed. Simulation results from a new multisine approach for active sensing of a nonholonomic mobile robot are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Geeter, J. D., De Schutter, J., Bruyninckx, H., Brussel, H. V., and Decrton, M.: Tolerance-Weighted L-optimal Experiment Design: a New Approach to Task-Directed Sensing. Advanced Robotics, Vol. 13, no.4 (1999) 401–416.
Roy, N., Burgard, W., Fox, D., and Thrun, S.: Coastal Navigation-Mobile Robot Navigation with Uncertainty in Dynamic Environments. Proc. of ICRA (1999)
Cassandra, A., Kaelbling, L., and Kurien, J.: Acting under Uncertainty: Discrete Bayesian Models for Mobile Robot Navigation. Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (1996)
DeSouza, G. N. and Kak, A.: Vision for Mobile Robot Navigation: A Survey. IEEE Trans. on Pattern Analysis and Machine Intel., Vol. 24, no. 2 (2002) 237–267.
Denzler, J. and Brown, C.: Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, (2002) 145–157.
Sutton, R. and Barto, A.: Reinforcement Learning, An introduction. MIT (1998)
Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian Tracking. IEEE Trans. on Signal Proc., Vol. 50, no. 2 (2002) 174–188.
Bar-Shalom, Y. and Li, X.: Estimation and Tracking: Principles, Techniques and Software. Artech House (1993)
Laumond, J.-P.: Robot Motion Planning and Control. Guidelines in Nonholonomic Motion Planning for Mobile Robots, by Laumond, J.-P, Sekhavat, S., and Lamiraux, F., available at http://www.laas.fr/∼jpl/book.html: Springer-Verlag (1998)
Brock, O. and Khatib, O.: Elastic Strips: A Framework for Integrated Planning and Execution. Proc. of 1999 Int. Symp. of Experim. Robotics, (1999) 245–254.
Fisher, R.: On the Mathematical Foundations of Theoretical Statistics. Phylosophical Trans. of the Royal Society of London, Series A, Vol. 222 (1922) 309–368.
Fedorov, V.: Theory of Optimal Experiments. Academic press, New York ed. (1972)
Shannon, C.: A Mathematical Theory of Communication, I and II. The Bell System Technical Journal, Vol. 27 (1948) 379–423 and 623-656.
Kullback, S.: On Information and Sufficiency. Annals of mathematical Statistics, Vol. 22 (1951) 79–86.
Mihaylova, L., De Schutter, J., and Bruyninckx, H.: A Multisine Approach for Trajectory Optimization Based on Information Gain. Proc. of IROS Conf. (2002)
Julier, S., Uhlman, J., and Durrant-Whyte, H.: A New Method for the Transformation of Means and Covariances in Filters and Estimators. IEEE Trans. on AC, Vol. 45, no. 3 (2000) 477–482.
Swevers, J., Ganseman, C., Tukel, D., De Schutter, J., and Brussel, H. V.: Optimal Robot Excitation and Identification. IEEE Trans. on AC, Vol. 13, no. 5 (1997) 730–740.
Bellman, R.: Dynamic Programming. New Jersey: Princeton Univ. Press (1957)
Howard, R. A.: Dynamic Programming and Markov Processes. MIT Press (1960)
Schweitzer, P. and Seidmann, A.: Generalized Polynomial Approximations in Markovian Decision Processes. J. of MA and Appl., Vol. 110 (1985) 568–582.
Boutilier, C., Dean, T., and Hanks, S.: Decision-Theoretic Planning: Structural Assumptions and Computational Leverage. J. of AI Research, Vol. 11 (1999) 1–94.
Lovenjoy, W. S.: A Survey of Algorithmic Methods for Partially Observed Markov Decision Processes. Annals of Operations Research, Vol. 18 (1991) 47–66.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mihaylova, L., Lefebvre, T., Bruyninckx, H., Gadeyne, K., De Schutter, J. (2003). A Comparison of Decision Making Criteria and Optimization Methods for Active Robotic Sensing. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds) Numerical Methods and Applications. NMA 2002. Lecture Notes in Computer Science, vol 2542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36487-0_35
Download citation
DOI: https://doi.org/10.1007/3-540-36487-0_35
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00608-4
Online ISBN: 978-3-540-36487-0
eBook Packages: Springer Book Archive