Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum Circuits with Unbounded Fan-out

  • Conference paper
  • First Online:
STACS 2003 (STACS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Included in the following conference series:

  • 970 Accesses

Abstract

We demonstrate that the unbounded fan-out gate is very powerful. Constant-depth polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a fixed basis (denoted by QNCso0f) can approximate with polynomially small error the following gates: parity, mod[q], And, Or, majority, threshold[t], exact[q], and counting. Classically, we need logarithmic depth even if we can use unbounded fan-in gates. If we allow arbitrary one-qubit gates instead of a fixed basis, then these circuits can also be made exact in log-star depth. Sorting, arithmetical operations, phase estimation, and the quantum Fourier transform can also be approximated in constant depth.

Supported by the Alberta Ingenuity Fund and the Pacific Institute for the Mathematical Sciences.

Work conducted in part while at Vrije Universiteit, Amsterdam. Partially supported by EU fifth framework project QAIP, IST-1999-11234 and RESQ, IST-2001-37559.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. M. Adleman, J. DeMarrais, and M. A. Huang. Quantum computability. SIAM Journal on Computing, 26(5):1524–1540, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Barenco, C. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Physical Review A, 52:3457–3467, 1995. quant-ph/9503016.

    Article  Google Scholar 

  3. J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74:4091–4094, 1995.

    Article  Google Scholar 

  4. R. Cleve and J. Watrous. Fast parallel circuits for the quantum Fourier transform. In Proc. of the 41st IEEE Symp. on Foundations of Computer Science, pages 526–536, 2000.

    Google Scholar 

  5. N. Gershenfeld and I. Chuang. Bulk spin resonance quantum computation. Science, 275:350–356, 1997. http://citeseer.nj.nec.com/gershenfeld97bulk.html.

    Article  MathSciNet  Google Scholar 

  6. F. Green, S. Homer, C. Moore, and C. Pollett. Counting, fanout, and the complexity of quantum ACC. Quantum Information and Computation, 2(1):35–65, 2002. quant-ph/0106017.

    MathSciNet  Google Scholar 

  7. W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58:13–30, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

    Google Scholar 

  9. C. Moore. Quantum circuits: Fanout, parity, and counting. quant-ph/9903046, 1999.

    Google Scholar 

  10. C. Moore and M. Nilsson. Parallel quantum computation and quantum codes. SIAM Journal on Computing, 31(3):799–815, 2002. quant-ph/9808027.

    Article  MathSciNet  Google Scholar 

  11. A. A. Razborov. Lower bounds for the size of circuits of bounded depth with basis &,⊕. Math. Notes Acad. Sci. USSR, 41(4):333–338, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. of the 35th Annual Symp. on FOCS, pages 124–134, Los Alamitos, CA, 1994. IEEE Press. http://citeseer.nj.nec.com/14533.html.

  13. K.-Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth efficient neural networks for division and related problems. IEEE Transactions on Information Theory, 39(3):946–956, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proc. 19th Annual ACM Symposium on Theory of Computing, pages 77–82, 1987.

    Google Scholar 

  15. R. Špalek. Quantum circuits with unbounded fan-out. Master’s thesis, Faculty of Sciences, Vrije Universiteit, Amsterdam, 2002. http://www.ucw.cz/~robert/qncwf/. Shorter version and improved results in quant-ph/0208043.

  16. W. K. Wootters and W. H. Zurek. A single quantum cannot be clone. Nature, 299:802–803, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Høyer, P., Špalek, R. (2003). Quantum Circuits with Unbounded Fan-out. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics