Abstract
Many problems can be formulated as the optimization of functions in R 2 which are implicitly defined by an arrangement of lines, halfplanes, or points, for example linear programming in the plane. We present an efficient general approach to find the optimum exactly, for a wide range of functions that possess certain useful properties. To illustrate the value of this approach, we give a variety of applications in which we speed up or simplify the best known algorithms. These include algorithms for finding robust geometric medians (such as the Tukey Median), robust regression lines, and ham-sandwich cuts.
Chargé de recherches du FNRS à l’Université Libre de Bruxelles
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G. Aloupis, S. Langerman, M. Soss, and G. Toussaint. Algorithms for bivariate medians and a fermat-torricelli problem for lines. In Proc. 13th Canad. Conf. Comput. Geom., 2001.
G. Aloupis, M. Soss, and G. Toussaint. On the computation of the bivariate median and the fermat-torricelli problem for lines. Technical Report SOCS-01.2, School of Computer Science, McGill University, Feb. 2001.
N. Amenta, M. Bern, D. Eppstein, and S.-H. Teng. Regression depth and center points. Discrete Comput. Geom., 23(3):305–323, 2000.
D. Avis. On the partitionability of point sets in space. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 116–120, 1985.
R. Barbara. The fermat-torricelli points of n lines. Mathematical Gazette, 84:24–29, 2000.
P. Brass and L. Heinrich-Litan. Computing the center of area of a convex polygon. Technical Report B 02-10, Freie Universität Berlin, Fachbereich Mathematik und Informatik, March 2002.
P. Brass, L. Heinrich-Litan, and P. Morin. Computing the center of area of a convex polygon. Technical report, 2002.
D. I. Clark and M. R. Osborne. Finite algorithms for Huber’s M-estimator. SIAM J. Sci. Statist. Comput., 7(1):72–85, 1986.
R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34(1):200–208, 1987.
R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J. Comput., 16:61–77, 1987.
M. DÃaz and J. O’Rourke. Computing the center of area of a polygon. In Proc. 1st Workshop Algorithms Data Struct., volume 382 of Lecture Notes Comput. Sci., pages 171–182. Springer-Verlag, 1989.
M. DÃaz and J. O’Rourke. Chord center for convex polygons. In B. Melter, A. Rosenfeld, and P. Bhattacharyai, editors, Computational Vision, pages 29–44. American Mathematical Society, 1991.
M. DÃaz and J. O’Rourke. Algorithms for computing the center of area of a convex polygon. Visual Comput., 10:432–442, 1994.
H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.
A. Gajentaan and M. H. Overmars. On a class of O(n 2) problems in computational geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.
P. Huber. Robust Statistics. John Wiley, NY, 1981.
S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of points in linear time. Discrete Comput. Geom., 12:291–312, 1994.
S. Langerman and W. Steiger. An optimal algorithm for hyperplane depth in the plane. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, 2000.
C.-Y. Lo, J. Matouisek, and W. L. Steiger. Algorithms for ham-sandwich cuts. Discrete Comput. Geom., 11:433–452, 1994.
J. Matoušek. Computing the center of planar point sets. In J. E. Goodman, R. Pollack, and W. Steiger, editors, Computational Geometry: Papers from the DIMACS Special Year, pages 221–230. American Mathematical Society, Providence, 1991.
N. Megiddo. Linear-time algorithms for linear programming in R 3 and related problems. SIAM J. Comput., 12:759–776, 1983.
K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellarès, D. Souvaine, I. Streinu, and A. Struyf. Fast implementation of depth contours using topological sweep. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 690–699. ACM Press, 2001.
D. M. Mount and N. S. Netanyahu. Efficient randomized algorithms for robust estimation of circular arcs and aligned ellipses. Technical report, Dec. 1997.
A. Nniinimaa, H. Oja, and J. Nyblom. The oja bivariate median. Applied Statistics, 41:611–617, 1992.
P. J. Rousseeuw and M. Hubert. Depth in an arrangement of hyperplanes. Discrete Comput. Geom., 22(2):167–176, 1999.
P. J. Rousseeuw and M. Hubert. Regression depth. J. Amer. Statist. Assoc., 94(446):388–402, 1999.
J. W. Tukey. Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pages 523–531. Canad. Math. Congress, Montreal, Que., 1975.
M. van Kreveld, J. Mitchell, P. Rousseeuw, M. Sharir, J. Snoeyink, and B. Speckmann. Efficient algorithms for maximum regression depth. In Proc. 15th ACM Symp. Comp. Geom., pages 31–40, 1999.
E. Zemel. An O(n) algorithm for the linear multiple choice knapsack problem and related problems. Inform. Process. Lett., 18(3):123–128, 1984.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Langerman, S., Steiger, W. (2003). Optimization in Arrangements. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_6
Download citation
DOI: https://doi.org/10.1007/3-540-36494-3_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00623-7
Online ISBN: 978-3-540-36494-8
eBook Packages: Springer Book Archive