Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimization in Arrangements

  • Conference paper
  • First Online:
STACS 2003 (STACS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Included in the following conference series:

Abstract

Many problems can be formulated as the optimization of functions in R 2 which are implicitly defined by an arrangement of lines, halfplanes, or points, for example linear programming in the plane. We present an efficient general approach to find the optimum exactly, for a wide range of functions that possess certain useful properties. To illustrate the value of this approach, we give a variety of applications in which we speed up or simplify the best known algorithms. These include algorithms for finding robust geometric medians (such as the Tukey Median), robust regression lines, and ham-sandwich cuts.

Chargé de recherches du FNRS à l’Université Libre de Bruxelles

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Aloupis, S. Langerman, M. Soss, and G. Toussaint. Algorithms for bivariate medians and a fermat-torricelli problem for lines. In Proc. 13th Canad. Conf. Comput. Geom., 2001.

    Google Scholar 

  2. G. Aloupis, M. Soss, and G. Toussaint. On the computation of the bivariate median and the fermat-torricelli problem for lines. Technical Report SOCS-01.2, School of Computer Science, McGill University, Feb. 2001.

    Google Scholar 

  3. N. Amenta, M. Bern, D. Eppstein, and S.-H. Teng. Regression depth and center points. Discrete Comput. Geom., 23(3):305–323, 2000.

    Google Scholar 

  4. D. Avis. On the partitionability of point sets in space. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 116–120, 1985.

    Google Scholar 

  5. R. Barbara. The fermat-torricelli points of n lines. Mathematical Gazette, 84:24–29, 2000.

    Article  Google Scholar 

  6. P. Brass and L. Heinrich-Litan. Computing the center of area of a convex polygon. Technical Report B 02-10, Freie Universität Berlin, Fachbereich Mathematik und Informatik, March 2002.

    Google Scholar 

  7. P. Brass, L. Heinrich-Litan, and P. Morin. Computing the center of area of a convex polygon. Technical report, 2002.

    Google Scholar 

  8. D. I. Clark and M. R. Osborne. Finite algorithms for Huber’s M-estimator. SIAM J. Sci. Statist. Comput., 7(1):72–85, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34(1):200–208, 1987.

    Article  MathSciNet  Google Scholar 

  10. R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J. Comput., 16:61–77, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Díaz and J. O’Rourke. Computing the center of area of a polygon. In Proc. 1st Workshop Algorithms Data Struct., volume 382 of Lecture Notes Comput. Sci., pages 171–182. Springer-Verlag, 1989.

    Google Scholar 

  12. M. Díaz and J. O’Rourke. Chord center for convex polygons. In B. Melter, A. Rosenfeld, and P. Bhattacharyai, editors, Computational Vision, pages 29–44. American Mathematical Society, 1991.

    Google Scholar 

  13. M. Díaz and J. O’Rourke. Algorithms for computing the center of area of a convex polygon. Visual Comput., 10:432–442, 1994.

    Article  Google Scholar 

  14. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.

    Google Scholar 

  15. A. Gajentaan and M. H. Overmars. On a class of O(n 2) problems in computational geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.

    MATH  MathSciNet  Google Scholar 

  16. P. Huber. Robust Statistics. John Wiley, NY, 1981.

    MATH  Google Scholar 

  17. S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of points in linear time. Discrete Comput. Geom., 12:291–312, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Langerman and W. Steiger. An optimal algorithm for hyperplane depth in the plane. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, 2000.

    Google Scholar 

  19. C.-Y. Lo, J. Matouisek, and W. L. Steiger. Algorithms for ham-sandwich cuts. Discrete Comput. Geom., 11:433–452, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Matoušek. Computing the center of planar point sets. In J. E. Goodman, R. Pollack, and W. Steiger, editors, Computational Geometry: Papers from the DIMACS Special Year, pages 221–230. American Mathematical Society, Providence, 1991.

    Google Scholar 

  21. N. Megiddo. Linear-time algorithms for linear programming in R 3 and related problems. SIAM J. Comput., 12:759–776, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellarès, D. Souvaine, I. Streinu, and A. Struyf. Fast implementation of depth contours using topological sweep. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 690–699. ACM Press, 2001.

    Google Scholar 

  23. D. M. Mount and N. S. Netanyahu. Efficient randomized algorithms for robust estimation of circular arcs and aligned ellipses. Technical report, Dec. 1997.

    Google Scholar 

  24. A. Nniinimaa, H. Oja, and J. Nyblom. The oja bivariate median. Applied Statistics, 41:611–617, 1992.

    Article  Google Scholar 

  25. P. J. Rousseeuw and M. Hubert. Depth in an arrangement of hyperplanes. Discrete Comput. Geom., 22(2):167–176, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. J. Rousseeuw and M. Hubert. Regression depth. J. Amer. Statist. Assoc., 94(446):388–402, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. W. Tukey. Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pages 523–531. Canad. Math. Congress, Montreal, Que., 1975.

    Google Scholar 

  28. M. van Kreveld, J. Mitchell, P. Rousseeuw, M. Sharir, J. Snoeyink, and B. Speckmann. Efficient algorithms for maximum regression depth. In Proc. 15th ACM Symp. Comp. Geom., pages 31–40, 1999.

    Google Scholar 

  29. E. Zemel. An O(n) algorithm for the linear multiple choice knapsack problem and related problems. Inform. Process. Lett., 18(3):123–128, 1984.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Langerman, S., Steiger, W. (2003). Optimization in Arrangements. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics