Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MOPED: A Multi-objective Parzen-Based Estimation of Distribution Algorithm for Continuous Problems

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2632))

Included in the following conference series:

Abstract

An evolutionary multi-objective optimization tool based on an estimation of distribution algorithm is proposed. The algorithm uses the ranking method of non-dominated sorting genetic algorithm-II and the Parzen estimator to approximate the probability density of solutions lying on the Pareto front. The proposed algorithm has been applied to different types of test case problems and results show good performance of the overall optimization procedure in terms of the number of function evaluations. An alternative spreading technique that uses the Parzen estimator in the objective function space is proposed as well. When this technique is used, achieved results appear to be qualitatively equivalent to those previously obtained by adopting the crowding distance described in non-dominated sorting genetic algorithm-II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mühlenbein, H., The equation for the response to selection and its use for prediction, Evolutionary Computation 5(3), pp. 303–346, 1998.

    Article  Google Scholar 

  2. Baluja, S., Population based incremental learning: A method for integrating genetic search based function optimization and competitive learning (Tech. Rep. No. CMU-CS-94-163). Pittsburgh, PA: Carnegie Mellon University, 1994.

    Google Scholar 

  3. Harik, G. R., Lobo, F. G., and Goldberg, D. E., The compact genetic algorithm, In Proceedings of the International Conference on Evolutionary Computation 1998, pp. 523–528, Piscataway, NJ: IEEE Service Center, 1998.

    Chapter  Google Scholar 

  4. Sebag, M., Ducoulombier, A., Extending population-based incremental learning to continuous search spaces, In Parallel Problem Solving from Nature PPSN V, pp. 418–427, Berlin: Springer Verlag, 1998

    Chapter  Google Scholar 

  5. De Bonet, J. S., Isbell, C. L., and Viola, P., MIMIC: Finding optima by estimating probability densities. In Mozer, M. C., Jordan, M. I., & Petsche, T. (Eds.), Advances in Neural Information Processing Systems, Vol. 9, pp. 424, The MIT Press, Cambridge, 1997.

    Google Scholar 

  6. Baluja, S., Davies, S., Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In Proceedings of the 14th International Conference on Machine Learning, pp. 30–38, Morgan Kaufmann, 1997.

    Google Scholar 

  7. Pelikan, M., Mühlenbein, H., The bivariate marginal distribution algorithm. In Roy, R., Furuhashi, T., & Chawdhry, P. K. (Eds.), Advances in Soft Computing Engineering Design and Manufacturing, pp. 521–535, London: Springer-Verlag, 1999.

    Google Scholar 

  8. Mühlenbein, H., Mahnig, T., The Factorized Distribution Algorithm for Additively Decomposed Functions, Proceedings of the 1999 Congress on Evolutionary Computation, pp. 752–759, 1999

    Google Scholar 

  9. Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., & Smith, R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, Vol. I, pp. 525–532. Orlando, FL, Morgan Kaufmann Publishers, San Francisco, CA, 1999.

    Google Scholar 

  10. Bosman, P.A.N., Thierens, D., Expanding from discrete to continuous estimation of distribution algorithms: The IDEA, in M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, and H.-P. Schwefel, eds., Parallel Problem Solving from Nature, pp 767–776, Springer, 2000.

    Google Scholar 

  11. Thierens, D., Bosman, P.A.N., Multi-Objective Mixture-based Iterated Density Estimation Evolutionary Algorithms L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference — GECCO-2001, pages 663–670, Morgan Kaufmann Publishers, 2001.

    Google Scholar 

  12. Khan, N., Goldberg, D.E., and Pelikan, M., Multi-Objective Bayesian Optimization Algorithm, IlliGAL Report No. 2002009, March 2002.

    Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A fast and elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, April 2002.

    Google Scholar 

  14. Parzen, E., On Estimation of a Probability Density Function and Mode, Ann. Math. Stat., Vol. 33, pp. 1065–1076, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  15. Cacoullos, T., Estimation of a Multivariate Density, Ann. Inst. Stat. Math., Vol. 18, pp. 179–189, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  16. Deb, K., Multi-Objective Genetic Algorithm: Problem Difficulties and Construction of Test Problems, Evolutionary Computation, Vol. 7, No. 3, pp. 205–230, The MIT Press, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa, M., Minisci, E. (2003). MOPED: A Multi-objective Parzen-Based Estimation of Distribution Algorithm for Continuous Problems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds) Evolutionary Multi-Criterion Optimization. EMO 2003. Lecture Notes in Computer Science, vol 2632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36970-8_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-36970-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01869-8

  • Online ISBN: 978-3-540-36970-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics