Abstract
An evolutionary multi-objective optimization tool based on an estimation of distribution algorithm is proposed. The algorithm uses the ranking method of non-dominated sorting genetic algorithm-II and the Parzen estimator to approximate the probability density of solutions lying on the Pareto front. The proposed algorithm has been applied to different types of test case problems and results show good performance of the overall optimization procedure in terms of the number of function evaluations. An alternative spreading technique that uses the Parzen estimator in the objective function space is proposed as well. When this technique is used, achieved results appear to be qualitatively equivalent to those previously obtained by adopting the crowding distance described in non-dominated sorting genetic algorithm-II.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mühlenbein, H., The equation for the response to selection and its use for prediction, Evolutionary Computation 5(3), pp. 303–346, 1998.
Baluja, S., Population based incremental learning: A method for integrating genetic search based function optimization and competitive learning (Tech. Rep. No. CMU-CS-94-163). Pittsburgh, PA: Carnegie Mellon University, 1994.
Harik, G. R., Lobo, F. G., and Goldberg, D. E., The compact genetic algorithm, In Proceedings of the International Conference on Evolutionary Computation 1998, pp. 523–528, Piscataway, NJ: IEEE Service Center, 1998.
Sebag, M., Ducoulombier, A., Extending population-based incremental learning to continuous search spaces, In Parallel Problem Solving from Nature PPSN V, pp. 418–427, Berlin: Springer Verlag, 1998
De Bonet, J. S., Isbell, C. L., and Viola, P., MIMIC: Finding optima by estimating probability densities. In Mozer, M. C., Jordan, M. I., & Petsche, T. (Eds.), Advances in Neural Information Processing Systems, Vol. 9, pp. 424, The MIT Press, Cambridge, 1997.
Baluja, S., Davies, S., Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In Proceedings of the 14th International Conference on Machine Learning, pp. 30–38, Morgan Kaufmann, 1997.
Pelikan, M., Mühlenbein, H., The bivariate marginal distribution algorithm. In Roy, R., Furuhashi, T., & Chawdhry, P. K. (Eds.), Advances in Soft Computing Engineering Design and Manufacturing, pp. 521–535, London: Springer-Verlag, 1999.
Mühlenbein, H., Mahnig, T., The Factorized Distribution Algorithm for Additively Decomposed Functions, Proceedings of the 1999 Congress on Evolutionary Computation, pp. 752–759, 1999
Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., & Smith, R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, Vol. I, pp. 525–532. Orlando, FL, Morgan Kaufmann Publishers, San Francisco, CA, 1999.
Bosman, P.A.N., Thierens, D., Expanding from discrete to continuous estimation of distribution algorithms: The IDEA, in M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, and H.-P. Schwefel, eds., Parallel Problem Solving from Nature, pp 767–776, Springer, 2000.
Thierens, D., Bosman, P.A.N., Multi-Objective Mixture-based Iterated Density Estimation Evolutionary Algorithms L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference — GECCO-2001, pages 663–670, Morgan Kaufmann Publishers, 2001.
Khan, N., Goldberg, D.E., and Pelikan, M., Multi-Objective Bayesian Optimization Algorithm, IlliGAL Report No. 2002009, March 2002.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A fast and elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, April 2002.
Parzen, E., On Estimation of a Probability Density Function and Mode, Ann. Math. Stat., Vol. 33, pp. 1065–1076, 1962.
Cacoullos, T., Estimation of a Multivariate Density, Ann. Inst. Stat. Math., Vol. 18, pp. 179–189, 1966.
Deb, K., Multi-Objective Genetic Algorithm: Problem Difficulties and Construction of Test Problems, Evolutionary Computation, Vol. 7, No. 3, pp. 205–230, The MIT Press, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Costa, M., Minisci, E. (2003). MOPED: A Multi-objective Parzen-Based Estimation of Distribution Algorithm for Continuous Problems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds) Evolutionary Multi-Criterion Optimization. EMO 2003. Lecture Notes in Computer Science, vol 2632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36970-8_20
Download citation
DOI: https://doi.org/10.1007/3-540-36970-8_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-01869-8
Online ISBN: 978-3-540-36970-7
eBook Packages: Springer Book Archive