Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lifelong Planning for Mobile Robots

  • Conference paper
  • First Online:
Advances in Plan-Based Control of Robotic Agents

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2466))

  • 462 Accesses

Abstract

Mobile robots often have to replan as their knowledge of the world changes. Lifelong planning is a paradigm that allows them to replan much faster than with complete searches from scratch, yet finds optimal solutions. To demonstrate this paradigm, we apply it to Greedy Mapping, a simple sensor-based planning method that always moves the robot from its current cell to a closest cell with unknown blockage status, until the terrain is mapped. Greedy Mapping has a small mapping time, makes only action recommendations and can thus coexist with other components of a robot architecture that also make action recommendations, and is able to take advantage of prior knowledge of parts of the terrain (if available). We demonstrate how a robot can use our lifelong-planning version of A* to repeatedly determine a shortest path from its current cell to a closest cell with unknown blockage status. Our experimental results demonstrate the advantage of lifelong planning for Greedy Mapping over other search methods. Similar results had so far been established only for goal-directed navigation in unknown terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Agre and D. Chapman. Pengi: An implementation of a theory of activity. In Proceedings of the National Conference on Artificial Intelligence, pages 268–272, 1987.

    Google Scholar 

  2. S. Albers and M. Henzinger. Exploring unknown environments. SIAM Journal on Computing, 29(4):1164–1188, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. De Almeida and C. Melin. Exploration of unknown environments by a mobile robot. Intelligent Autonomous Systems, 2:715–725, 1989.

    Google Scholar 

  4. R. Alterman. Adaptive planning. Cognitive Science, 12(3):393–421, 1988.

    Article  Google Scholar 

  5. R. Arkin. Motor-schema based mobile robot navigation. International Journal of Robotics Research, 8(4):92–112, 1989.

    Article  Google Scholar 

  6. R. Arkin and T. Balch. AuRA: Principles and practice in review. Journal of Experimental and Theoretical Artificial Intelligence, 9(2):175–189, 1997.

    Article  Google Scholar 

  7. B. Awerbuch, M. Betke, R. Rivest, and M. Singh. Piecemeal graph exploration by a mobile robot. Information and Computation, 152(2):155–172, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun. Collaborative multi-robot exploration. In Proceedings of the International Conference on Robotics and Automation, pages 476–481, 2000.

    Google Scholar 

  9. C. Choo, J. Smith, and N. Nasrabadi. An efficient terrain acquisition algorithm for a mobile robot. In Proceedings of the International Conference on Robotics and Automation, pages 306–311, 1991.

    Google Scholar 

  10. H. Choset. Sensor-Based Motion Planning: The Hierarchical Generalized Voronoi Graph. PhD thesis, California Institute of Technology, Pasadena (California), 1996.

    Google Scholar 

  11. X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment; I: The rectilinear case. Journal of the ACM, 45(2):215–245, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. X. Deng and C. Papadimitriou. Exploring an unknown graph. In Proceedings of the Symposium on Foundations of Computer Science, pages 355–361, 1990.

    Google Scholar 

  13. G. Dudek, P. Freedman, and S. Hadjres. Using local information in a non-local way for mapping graph-like worlds. In Proceedings of the International Conference on Artificial Intelligence, pages 1639–1647, 1993.

    Google Scholar 

  14. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph construction. IEEE Transactions on Robotics and Automation, 7(6):859–865, 1991.

    Article  Google Scholar 

  15. D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms for maintaining shortest paths trees. Journal of Algorithms, 34(2):251–281, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Gerevini and I. Serina. Fast plan adaptation through planning graphs: Local and systematic search techniques. In Proceedings of the International Conference on Artificial Intelligence Planning and Scheduling, pages 112–121, 2000.

    Google Scholar 

  17. A. Goel, K. Ali, M. Donnelan, A. Gomez de Silva Garza, and T. Callantine. Mul-tistrategy adaptive path planning. IEEE Expert Journal, 9(6):57–65, 1994.

    Article  Google Scholar 

  18. K. Hammond. Explaining and repairing plans that fail. Artificial Intelligence, 45:173–228, 1990.

    Article  Google Scholar 

  19. S. Hanks and D. Weld. A domain-independent algorithm for plan adaptation. Journal of Artificial Intelligence Research, 2:319–360, 1995.

    Google Scholar 

  20. S. Kambhampati and J. Hendler. A validation-structure-based theory of plan modification and reuse. Artificial Intelligence, 55:193–258, 1992.

    Article  Google Scholar 

  21. J. Koehler. Flexible plan reuse in a formal framework. In Christer Bäckström and Erik Sandewall, editors, Current Trends in AI Planning, pages 171–184. IOS Press, 1994.

    Google Scholar 

  22. S. Koenig, D. Furcy, and Colin Bauer. Heuristic search-based replanning. In Proceedings of the International Conference on Planning and Scheduling, 2002.

    Google Scholar 

  23. S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in unknown terrain. Technical Report GIT-COGSCI-2002/3, College of Computing, Georgia Institute of Technology, Atlanta (Georgia), 2001.

    Google Scholar 

  24. S. Koenig and M. Likhachev. Incremental A*. In Advances in Neural Information Processing Systems 14, 2001.

    Google Scholar 

  25. S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in unknown terrain. In Proceedings of the International Conference on Robotics and Automation, 2002.

    Google Scholar 

  26. S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping of terrain. In Proceedings of the International Conference on Robotics and Automation, pages 3594–3599, 2001.

    Google Scholar 

  27. B. Kuipers and Y. Byun. A robust, qualitative method for robot spatial learning. In Proceedings of the National Conference on Artificial Intelligence, pages 774–779, 1988.

    Google Scholar 

  28. S. Kwek. On a simple depth-first search strategy for exploring unknown graphs. In Proceedings of the Workshop on Algorithms and Data Structures, volume 1272 of Lecture Notes in Computer Science, pages 345–353. Springer, 1997.

    Google Scholar 

  29. J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research, 11(4):286–298, 1992.

    Article  Google Scholar 

  30. Y. Liu, S. Koenig, and D. Furcy. Speeding up the calculation of heuristics for heuristic search-based planning. In Proceedings of the National Conference on Artificial Intelligence, 2002.

    Google Scholar 

  31. V. Lumelsky and A. Stepanov. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403–430, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Mackenzie, R. Arkin, and J. Cameron. Multiagent mission specification and execution. Autonomous Robots, 4(1):29–57, 1997.

    Article  Google Scholar 

  33. G. Oriolo, G. Ulivi, and M. Vendittelli. Real-time map building and navigation for autonomous robots in unknown environments. IEEE Transactions on Systems, Man, and Cybernetics, 28(3):316–333, 1998.

    Article  Google Scholar 

  34. P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algorithms, 33(2):281–295, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  35. C. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computer Science, 84(1):127–150, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, 1985.

    Google Scholar 

  37. L. Prasad and S. Iyengar. A note on the combinatorial structure of the visibility graph in simple polygons. Theoretical Computer Science, 140(2):249–263, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  38. G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the shortest-path problem. Journal of Algorithms, 21:267–305, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  39. N. Rao. Algorithmic framework for learned robot navigation in unknown terrains. IEEE Computer, 22(6):37–43, 1989.

    Google Scholar 

  40. N. Rao. Robot navigation in unknown generalized polygonal terrains using vision sensors. IEEE Transactions on Systems, Man, and Cybernetics, 25(6):947–962, 1995.

    Article  Google Scholar 

  41. N. Rao, S. Hareti, W. Shi, and S. Iyengar. Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410, Oak Ridge National Laboratory, Oak Ridge (Tennessee), 1993.

    Google Scholar 

  42. L. Romero, E. Morales, and E. Sucar. An exploration and navigation approach for indoor mobile robots considering sensor’s perceptual limitations. In Proceedings of the International Conference on Robotics and Automation, pages 3092–3097, 2001.

    Google Scholar 

  43. R. Simmons. A theory of debugging plans and interpretations. In Proceedings of the National Conference on Artificial Intelligence, pages 94–99, 1988.

    Google Scholar 

  44. K. Singh and K. Fujimura. Map making by cooperating mobile robots. In Proceedings of the International Conference on Robotics and Automation, pages 254–259, 1993.

    Google Scholar 

  45. A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 1652–1659, 1995.

    Google Scholar 

  46. S. Thrun. Lifelong learning algorithms. In S. Thrun and L. Pratt, editors, Learning To Learn. Kluwer Academic Publishers, 1998.

    Google Scholar 

  47. S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig, T. Hof-mann, M. Krell, and T. Schmidt. Map learning and high-speed navigation in RHINO. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors, Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pages 21–52. MIT Press, 1998.

    Google Scholar 

  48. M. Veloso. Planning and Learning by Analogical Reasoning. Springer, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Likhachev, M., Koenig, S. (2002). Lifelong Planning for Mobile Robots. In: Beetz, M., Hertzberg, J., Ghallab, M., Pollack, M.E. (eds) Advances in Plan-Based Control of Robotic Agents. Lecture Notes in Computer Science(), vol 2466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37724-7_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-37724-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00168-3

  • Online ISBN: 978-3-540-37724-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics