Abstract
We propose RPST, a randomized data structure for the 11/2-dimensional range query problem, based on a version of Skip Lists, as an alternative to solutions that use deterministic height balanced trees. Our scheme exhibits, with high probability, logarithmic, output-sensitive search time, expected logarithmic update time, expected constant reconstruction time and linear space overhead with high probability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bentley J. L., Wood D.: “An Optimal Worst-Case Algorithm for Reporting Intersections of Rectangles”, IEEE Transactions on Computers, Vol.29, No.7, pp.571–577, 1980.
de Berg M., van Kreveld M., Overmars M. and Schwarzkopf O.: “Computational Geometry: Algorithms and Applications”, Springer, Berlin, 2000. 440, 441
Bozanis P. and Manolopoulos Y.: “DSL: Accommodating Skip Lists in the SDDS Model”, Proceedings 3rd Workshop on Distributed Data and Structures (WDAS’2000), pp.1–9, L’Aquila, Italy, July 2000. 443
Hanson E. N. and Johnson, T.: “The Interval Skip List: a Data Structure for Finding all Intervals that Overlap a Point”, Proceedings 2nd Workshop on Algorithms and Data Structures (WADS’91), pp.153–164, Ottawa, Canada, August 1991. 440
Huddleston S. and Mehlhorn K.: “A New Representation for Linear Lists”, Acta Informatica, Vol.17, pp.157–184, 1982. 444
McCreight E. M.: “Priority Search Trees”, SIAM Journal on Computing, Vol.14, pp.257–276, 1985. 440
Mehlhorn K.: “Data Structures & Algorithms, Vol. 3: Multidimensional Searching and Computational Geometry”, Springer, Berlin, 1984. 440, 441, 442, 451
Mulmuley K.: “Computational Geometry: an introduction Through Randomized Algorithms”, Prentice-Hall, Englewood Cliffs, NJ, 1994. 443, 450
Papadakis T.: “Skip Lists and Probabilistic Analysis of Algorithms”, Ph.D. Thesis, University of Waterloo, May 1993. 442
Pugh W.: “A Skip List CookBook”, Technical Report CS-TR-2286, Department of Computer Science, University of Maryland at College Park, July 1989. 442
Pugh W.: “Skip Lists: a Probabilistic Alternative to Balanced Trees”, Communications of the ACM, Vol.33, pp.668–676, 1990. 442
Seidel R. and Aragon C. R.: “Randomized Search Trees”, Algorithmica, Vol.16, pp.464–497, 1996. 443
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bozanis, P. (2003). A New Randomized Data Structure for the 1 1/2-dimensional Range Query Problem. In: Manolopoulos, Y., Evripidou, S., Kakas, A.C. (eds) Advances in Informatics. PCI 2001. Lecture Notes in Computer Science, vol 2563. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-38076-0_28
Download citation
DOI: https://doi.org/10.1007/3-540-38076-0_28
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-07544-8
Online ISBN: 978-3-540-38076-4
eBook Packages: Springer Book Archive