Abstract
Using semantic knowledge in NLP applications always improves their competence. Broad lexicons have been developed, but there are few resources which contain semantic information available for words and which are non-dedicated to specialized domains. In order to build such a base, we designed a system, SVETLAN’, able to learn categories of nouns from texts, whatever their domain. In order to avoid general classes mixing all the meanings of words, they are learned taking into account the contextual use of words.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basili, R., Pazienza, M.T., Velardi, P.: What can be learned from raw texts? Machine Translation, Vol. 8 (1993) 147–173
Basili, R., Della Rocca, M., Pazienza, M.T., Velardi, P.: Contexts and Categories: Tuning a General Purpose Verb Classification to Sublanguages. Proceedings of the International Conference on Recent Advances in Natural Language Processing, Tzigov Chark, Bulgaria, 14–16 Sept. 1995)
Constant, P.: Analyse Syntaxique Par Couches. PhD thesis, école Nationale Supérieure des Télécommunications, (Apr. 1991)
Constant, P.: L’analyseur linguistique SYLEX. 5ème école d’été du CNET (1995).
Fabre, C., Habert, B., Labbé, D.: La polysémie dans la langue générale et les discours spécialisés. Sémiotiques, number 13 (1997) 15–31
Faure, D., Nedellec, C.: ASIUM, Learning subcategorization frames and restrictions of selection. In: Kodratoff, Y. (ed.): Proceedings of the 10th European Conference on Machine Learning-Workshop on text mining (1998)
Fellbaum, C. (Ed.): WordNet: an electronic lexical database. The MIT Press (1998)
Ferret, O.: How to thematically segment texts by using lexical cohesion? Proceedings of ACL-COLING’98 (student session). Montreal, Canada, (1998) 1481–1483
Ferret, O., Grau, B.: A Thematic Segmentation Procedure for Extracting Semantic Domains from Texts. Proceedings of the European Conference on Artificial Intelligence, ECAI’98. Brighton, UK (1998)
Greffenstette, G.: Explorations in automatic thesaurus discovery. Kluwer Academic Pub., Boston (1994)
Habert, B., Fabre, F.: Elementary dependency trees for identifying corpus-specific semantic classes. Computers and the Humanities, volume 33, number 3 (1999) 207–219
Lin, C.-Y.: Robust Automated Topic Identification. Doctoral Dissertation, University of Southern California (1997)
Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. Proceedings of ACL’93 (1993)
Rousselot, F., Frath, P., Oueslati, R.: Extracting concepts and relations from corpora. Proceeding of the Corpus-Oriented Semantic Analysis workshop of the European Conference on Artificial Intelligence, ECAI’96. Budapest, Hungary (1996) 74–78
Zernik, U.: TRAIN1 vs. TRAIN2: Tagging Word Senses in Corpus. Proceedings of Recherche d’Informations Assistée par Ordinateur, RIAO’91 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Chalendar, G., Grau, B. (2000). SVETLAN’ Or How to Classify Words Using Their Context. In: Dieng, R., Corby, O. (eds) Knowledge Engineering and Knowledge Management Methods, Models, and Tools. EKAW 2000. Lecture Notes in Computer Science(), vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39967-4_15
Download citation
DOI: https://doi.org/10.1007/3-540-39967-4_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41119-2
Online ISBN: 978-3-540-39967-4
eBook Packages: Springer Book Archive