Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SVETLAN’ Or How to Classify Words Using Their Context

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management Methods, Models, and Tools (EKAW 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1937))

  • 1332 Accesses

Abstract

Using semantic knowledge in NLP applications always improves their competence. Broad lexicons have been developed, but there are few resources which contain semantic information available for words and which are non-dedicated to specialized domains. In order to build such a base, we designed a system, SVETLAN’, able to learn categories of nouns from texts, whatever their domain. In order to avoid general classes mixing all the meanings of words, they are learned taking into account the contextual use of words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basili, R., Pazienza, M.T., Velardi, P.: What can be learned from raw texts? Machine Translation, Vol. 8 (1993) 147–173

    Article  Google Scholar 

  2. Basili, R., Della Rocca, M., Pazienza, M.T., Velardi, P.: Contexts and Categories: Tuning a General Purpose Verb Classification to Sublanguages. Proceedings of the International Conference on Recent Advances in Natural Language Processing, Tzigov Chark, Bulgaria, 14–16 Sept. 1995)

    Google Scholar 

  3. Constant, P.: Analyse Syntaxique Par Couches. PhD thesis, école Nationale Supérieure des Télécommunications, (Apr. 1991)

    Google Scholar 

  4. Constant, P.: L’analyseur linguistique SYLEX. 5ème école d’été du CNET (1995).

    Google Scholar 

  5. Fabre, C., Habert, B., Labbé, D.: La polysémie dans la langue générale et les discours spécialisés. Sémiotiques, number 13 (1997) 15–31

    Google Scholar 

  6. Faure, D., Nedellec, C.: ASIUM, Learning subcategorization frames and restrictions of selection. In: Kodratoff, Y. (ed.): Proceedings of the 10th European Conference on Machine Learning-Workshop on text mining (1998)

    Google Scholar 

  7. Fellbaum, C. (Ed.): WordNet: an electronic lexical database. The MIT Press (1998)

    Google Scholar 

  8. Ferret, O.: How to thematically segment texts by using lexical cohesion? Proceedings of ACL-COLING’98 (student session). Montreal, Canada, (1998) 1481–1483

    Google Scholar 

  9. Ferret, O., Grau, B.: A Thematic Segmentation Procedure for Extracting Semantic Domains from Texts. Proceedings of the European Conference on Artificial Intelligence, ECAI’98. Brighton, UK (1998)

    Google Scholar 

  10. Greffenstette, G.: Explorations in automatic thesaurus discovery. Kluwer Academic Pub., Boston (1994)

    Google Scholar 

  11. Habert, B., Fabre, F.: Elementary dependency trees for identifying corpus-specific semantic classes. Computers and the Humanities, volume 33, number 3 (1999) 207–219

    Article  Google Scholar 

  12. Lin, C.-Y.: Robust Automated Topic Identification. Doctoral Dissertation, University of Southern California (1997)

    Google Scholar 

  13. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. Proceedings of ACL’93 (1993)

    Google Scholar 

  14. Rousselot, F., Frath, P., Oueslati, R.: Extracting concepts and relations from corpora. Proceeding of the Corpus-Oriented Semantic Analysis workshop of the European Conference on Artificial Intelligence, ECAI’96. Budapest, Hungary (1996) 74–78

    Google Scholar 

  15. Zernik, U.: TRAIN1 vs. TRAIN2: Tagging Word Senses in Corpus. Proceedings of Recherche d’Informations Assistée par Ordinateur, RIAO’91 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Chalendar, G., Grau, B. (2000). SVETLAN’ Or How to Classify Words Using Their Context. In: Dieng, R., Corby, O. (eds) Knowledge Engineering and Knowledge Management Methods, Models, and Tools. EKAW 2000. Lecture Notes in Computer Science(), vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39967-4_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-39967-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41119-2

  • Online ISBN: 978-3-540-39967-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics