Abstract
In response to an explosive growth of collected, stored, and transferred data, Data Mining has emerged as a new research area. However, the approaches studied in this area are mostly specialized to analyze precise and highly structured data. Other sources of information— for instance images—have often been neglected. The term Information Mining wants to emphasize the need for methods suited for more heterogeneous and imprecise information sources. We also claim the importance of fuzzy set methods to meet the prominent aim of to producing comprehensible results. Two case studies of applying information mining techniques to remotely sensed image data are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Bandemer and W. Näther. Fuzzy Data Analysis. Mathematical and Statistical Methods. Kluwer, Dordrecht, 1992. 269
M. Berhold and K.-P. Huber. Tolerating missing values in a fuzzy environment. In Mares, Mesiar, Novak, and Ramik, editors, Proc. 7th International Fuzzy Systems Association World Congress IFSA’97, pages 359–362. Academia, Prag, 1997. 274
P. Chapman, J. Clinton, T. Khabaza, T. Reinartz, and R. Wirth. The CRISP-DM process model, 1999. available from http://www.crisp-dm.org/. 267
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistic Society, 1(39):1–38, 1997. 274
D. Dubois, H. Prade, and R. R. Yager. Information engineering and fuzzy logic. In Proc. 5th IEEE International Conference on Fuzzy Systems FUZZ-IEEE’96, New Orleans, LA, pages 1525–1531. IEEE Press, Piscataway, NJ, 1996. 269
E. Falkenauer. The grouping genetic algorithms-widening the scope of the GAs. Belgian Journal of Operations Research, Statistics and Computer Science, 33:79–102, 1993. 279
C. Faloutsos, R. Barber, M. Flickner, W. Niblack, D. Petkovic, and W. Equitz. Efficient and effective querying by image content. J. of Intelligent Information Systems, 3(3/4):231–262, 1994. 270
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI Press / MIT Press, Cambridge, MA, 1996. 267, 268, 270
U. Fayyad and P. Smyth, editors. Image Database Exploration: Progress and Challenges. AAAI Press, Menlo Park, CA, 1993. 270
D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the world-wide web: A survey. SIGMOD Record, 27(3):59–74, 1998. 270
S. Gibson, O. Kosheleva, L. Longpre, B. Penn, and S. A. Starks. An optimal FFTbased algorithm for mosaicing images, with applications to satellite imaging and web search. In Proc. 5th Joint Conference on Information Sciences JCIS 2000, pages 248–251, 2000. 270
D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading, MA, 1989. 279
D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. In G. Rawlins, editor, Foundations of Genetic Algorithms. Morgan Kaufmann, 1991. 280
J. F. Hair, R. E. Anderson, R. L. Tatham, and W. C. Black. Multivariate Data Analysis, Fifth Edition. Prentice-Hall, Upper Saddle River, NJ, 1998. 274
J. H. Holland. Adaptation in natural and artificial Systems. The University of Michigan Press, Ann Arbor, MI, 1975. 279
A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ, 1988. 278, 279
D. R. Jones and M. A. Beltramo. Solving partitioning problems with genetic algorithms. In R. Belew and L. Booker, editors, Proc. 4th Intl. Conf. Genetic Algorithms, Morgan Kaufmann, Los Altos, CA, 1991. 279
S. Khuri, T. Bäck, and J. Heitkötter. An evolutionary approach to combinatorial optimization problems. In Proc. 22nd Annual ACM Computer Science Conference CSC’94, pages 66–73, Phoenix, 1994. ACM Press, New York. 279, 280
G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, Englewood Cliffs, NJ, 1995. 281
A. Klose, R. Kruse, H. Gross, and U. Thönnessen. Tuning on the fly of structural image analysis algorithms using data mining. In Priddy, Keller, and Fogel, editors, Applications and Science of Computational Intelligence III, Proc. SPIE AeroSense’00, Orlando, FL, pages 311–321. SPIE Press, 2000. 278
A. Klose, R. Kruse, K. Schulz, and U. Thönnessen. Controlling asymmetric errors in neuro-fuzzy classiffication. In Proc. ACM SAC’00. ACM Press, 2000. 271, 275
A. Klose and A. Nürnberger. Applying boolean transformations to fuzzy rule bases. In Proc. EUFIT’99, 1999. 274
A. Klose, A. Nürnberger, and D. Nauck. Some approaches to improve the interpretability of neuro-fuzzy classiffiers. In Proc. EUFIT’98, pages 629–633, 1998. 274
R. Kruse, C. Borgelt, and D. Nauck. Fuzzy data analysis: Challenges and perspectives. In Proc. 8th IEEE International Conference on Fuzzy Systems FUZZIEEE’ 99, Seoul, Korea. IEEE Press, Piscataway, NJ, 1999. 268, 269
R. Kruse, J. Gebhardt, and F. Klawonn. Foundations of Fuzzy Systems. Wiley, Chichester, 1994. 269
T. V. Le. Fuzzy evolutionary programming for image processing. In Proc. Int. Conf. on Intelligent Processing and Manufacturing of Materials, pages 497–503, Gold Coast, Australia, 1997. 279
M. Mitchell. An introduction to genetic algorithms. MIT Press, Cambridge, MA, 1998. 279, 280
T. M. Mitchell. Machine Learning. McGraw-Hill, New York, NY, 1997. 274
D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems. Wiley, Chichester, 1997. 269, 272, 274
D. Nauck and R. Kruse. Fuzzy classification rules using categorical and metric variables. In Proc. 6th Int. Workshop on Fuzzy-Neuro Systems FNS’99. Leipziger Universitätsverlag, Leipzig, 1999. 273
D. Nauck, U. Nauck, and R. Kruse. NEFCLASS for JAVA—new learning algorithms. In Proc. 18th Intl. Conf. of the North American Fuzzy Information Processing Society NAFIPS’99. IEEE Press, New York, NY, 1999. 272, 274
V. V. Raghavan and K. Birchard. A clustering strategy based on a formalism of the reproductive process in natural systems. In Proc. 2nd Intl. Conf. of Research and Development in Information Retrieval, pages 10–22, 1978. 279
R. Schärf, H. Schwan, and U. Thönnessen. Reconnaissance in SAR images. In Proc. of the European Conference on Synthetic Aperture Radar, Berlin, Offenbach, pages 343–346, 1998. 271
H. Schwan, R. Schärf, and U. Thönnessen. Reconnaissance of extended targets in SAR image data. In Proc. of the European Symposium on Remote Sensing, Barcelona, September 21th–24th, 1998. 271
U. Stilla, E. Michaelsen, and K. Lütjen. Automatic extraction of buildings from aerial images. In Leberl, Kalliany, and Gruber, editors, Mapping Buildings, Roads and other Man-Made Structures from Images, Proc. IAPR-TC7 Workshop, Graz, pages 229–244. R. Oldenbourg, München, 1996. 271
N. Vasconcelos and A. Lippman. A bayesian framework for semantic content characterization. In Proc. Intl. Conf. Computer Vision and Pattern Recognition CVPR, pages 566–571, 1998. 270
L.-X. Wang and J. M. Mendel. Generating fuzzy rules by learning from examples. IEEE Trans. Syst., Man, Cybern., 22(6):1414–1427, 1992. 272
L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Systems, Man &amt; Cybernetics, 3:28–44, 1973. 282
L. A. Zadeh. Computing with words. IEEE Transactions on Fuzzy Systems, 4:103–111, 1996. 269
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kruse, R., Klose, A. (2000). Information Mining: Applications in Image Processing. In: Hlaváč, V., Jeffery, K.G., Wiedermann, J. (eds) SOFSEM 2000: Theory and Practice of Informatics. SOFSEM 2000. Lecture Notes in Computer Science, vol 1963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44411-4_16
Download citation
DOI: https://doi.org/10.1007/3-540-44411-4_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41348-6
Online ISBN: 978-3-540-44411-4
eBook Packages: Springer Book Archive