Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Information Mining: Applications in Image Processing

  • Conference paper
  • First Online:
SOFSEM 2000: Theory and Practice of Informatics (SOFSEM 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1963))

Abstract

In response to an explosive growth of collected, stored, and transferred data, Data Mining has emerged as a new research area. However, the approaches studied in this area are mostly specialized to analyze precise and highly structured data. Other sources of information— for instance images—have often been neglected. The term Information Mining wants to emphasize the need for methods suited for more heterogeneous and imprecise information sources. We also claim the importance of fuzzy set methods to meet the prominent aim of to producing comprehensible results. Two case studies of applying information mining techniques to remotely sensed image data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Bandemer and W. Näther. Fuzzy Data Analysis. Mathematical and Statistical Methods. Kluwer, Dordrecht, 1992. 269

    Google Scholar 

  2. M. Berhold and K.-P. Huber. Tolerating missing values in a fuzzy environment. In Mares, Mesiar, Novak, and Ramik, editors, Proc. 7th International Fuzzy Systems Association World Congress IFSA’97, pages 359–362. Academia, Prag, 1997. 274

    Google Scholar 

  3. P. Chapman, J. Clinton, T. Khabaza, T. Reinartz, and R. Wirth. The CRISP-DM process model, 1999. available from http://www.crisp-dm.org/. 267

  4. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistic Society, 1(39):1–38, 1997. 274

    Google Scholar 

  5. D. Dubois, H. Prade, and R. R. Yager. Information engineering and fuzzy logic. In Proc. 5th IEEE International Conference on Fuzzy Systems FUZZ-IEEE’96, New Orleans, LA, pages 1525–1531. IEEE Press, Piscataway, NJ, 1996. 269

    Google Scholar 

  6. E. Falkenauer. The grouping genetic algorithms-widening the scope of the GAs. Belgian Journal of Operations Research, Statistics and Computer Science, 33:79–102, 1993. 279

    MATH  Google Scholar 

  7. C. Faloutsos, R. Barber, M. Flickner, W. Niblack, D. Petkovic, and W. Equitz. Efficient and effective querying by image content. J. of Intelligent Information Systems, 3(3/4):231–262, 1994. 270

    Article  Google Scholar 

  8. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI Press / MIT Press, Cambridge, MA, 1996. 267, 268, 270

    Google Scholar 

  9. U. Fayyad and P. Smyth, editors. Image Database Exploration: Progress and Challenges. AAAI Press, Menlo Park, CA, 1993. 270

    Google Scholar 

  10. D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the world-wide web: A survey. SIGMOD Record, 27(3):59–74, 1998. 270

    Article  Google Scholar 

  11. S. Gibson, O. Kosheleva, L. Longpre, B. Penn, and S. A. Starks. An optimal FFTbased algorithm for mosaicing images, with applications to satellite imaging and web search. In Proc. 5th Joint Conference on Information Sciences JCIS 2000, pages 248–251, 2000. 270

    Google Scholar 

  12. D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading, MA, 1989. 279

    MATH  Google Scholar 

  13. D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. In G. Rawlins, editor, Foundations of Genetic Algorithms. Morgan Kaufmann, 1991. 280

    Google Scholar 

  14. J. F. Hair, R. E. Anderson, R. L. Tatham, and W. C. Black. Multivariate Data Analysis, Fifth Edition. Prentice-Hall, Upper Saddle River, NJ, 1998. 274

    Google Scholar 

  15. J. H. Holland. Adaptation in natural and artificial Systems. The University of Michigan Press, Ann Arbor, MI, 1975. 279

    Google Scholar 

  16. A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ, 1988. 278, 279

    MATH  Google Scholar 

  17. D. R. Jones and M. A. Beltramo. Solving partitioning problems with genetic algorithms. In R. Belew and L. Booker, editors, Proc. 4th Intl. Conf. Genetic Algorithms, Morgan Kaufmann, Los Altos, CA, 1991. 279

    Google Scholar 

  18. S. Khuri, T. Bäck, and J. Heitkötter. An evolutionary approach to combinatorial optimization problems. In Proc. 22nd Annual ACM Computer Science Conference CSC’94, pages 66–73, Phoenix, 1994. ACM Press, New York. 279, 280

    Google Scholar 

  19. G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, Englewood Cliffs, NJ, 1995. 281

    MATH  Google Scholar 

  20. A. Klose, R. Kruse, H. Gross, and U. Thönnessen. Tuning on the fly of structural image analysis algorithms using data mining. In Priddy, Keller, and Fogel, editors, Applications and Science of Computational Intelligence III, Proc. SPIE AeroSense’00, Orlando, FL, pages 311–321. SPIE Press, 2000. 278

    Google Scholar 

  21. A. Klose, R. Kruse, K. Schulz, and U. Thönnessen. Controlling asymmetric errors in neuro-fuzzy classiffication. In Proc. ACM SAC’00. ACM Press, 2000. 271, 275

    Google Scholar 

  22. A. Klose and A. Nürnberger. Applying boolean transformations to fuzzy rule bases. In Proc. EUFIT’99, 1999. 274

    Google Scholar 

  23. A. Klose, A. Nürnberger, and D. Nauck. Some approaches to improve the interpretability of neuro-fuzzy classiffiers. In Proc. EUFIT’98, pages 629–633, 1998. 274

    Google Scholar 

  24. R. Kruse, C. Borgelt, and D. Nauck. Fuzzy data analysis: Challenges and perspectives. In Proc. 8th IEEE International Conference on Fuzzy Systems FUZZIEEE’ 99, Seoul, Korea. IEEE Press, Piscataway, NJ, 1999. 268, 269

    Google Scholar 

  25. R. Kruse, J. Gebhardt, and F. Klawonn. Foundations of Fuzzy Systems. Wiley, Chichester, 1994. 269

    Google Scholar 

  26. T. V. Le. Fuzzy evolutionary programming for image processing. In Proc. Int. Conf. on Intelligent Processing and Manufacturing of Materials, pages 497–503, Gold Coast, Australia, 1997. 279

    Google Scholar 

  27. M. Mitchell. An introduction to genetic algorithms. MIT Press, Cambridge, MA, 1998. 279, 280

    MATH  Google Scholar 

  28. T. M. Mitchell. Machine Learning. McGraw-Hill, New York, NY, 1997. 274

    MATH  Google Scholar 

  29. D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems. Wiley, Chichester, 1997. 269, 272, 274

    Google Scholar 

  30. D. Nauck and R. Kruse. Fuzzy classification rules using categorical and metric variables. In Proc. 6th Int. Workshop on Fuzzy-Neuro Systems FNS’99. Leipziger Universitätsverlag, Leipzig, 1999. 273

    Google Scholar 

  31. D. Nauck, U. Nauck, and R. Kruse. NEFCLASS for JAVA—new learning algorithms. In Proc. 18th Intl. Conf. of the North American Fuzzy Information Processing Society NAFIPS’99. IEEE Press, New York, NY, 1999. 272, 274

    Google Scholar 

  32. V. V. Raghavan and K. Birchard. A clustering strategy based on a formalism of the reproductive process in natural systems. In Proc. 2nd Intl. Conf. of Research and Development in Information Retrieval, pages 10–22, 1978. 279

    Google Scholar 

  33. R. Schärf, H. Schwan, and U. Thönnessen. Reconnaissance in SAR images. In Proc. of the European Conference on Synthetic Aperture Radar, Berlin, Offenbach, pages 343–346, 1998. 271

    Google Scholar 

  34. H. Schwan, R. Schärf, and U. Thönnessen. Reconnaissance of extended targets in SAR image data. In Proc. of the European Symposium on Remote Sensing, Barcelona, September 21th–24th, 1998. 271

    Google Scholar 

  35. U. Stilla, E. Michaelsen, and K. Lütjen. Automatic extraction of buildings from aerial images. In Leberl, Kalliany, and Gruber, editors, Mapping Buildings, Roads and other Man-Made Structures from Images, Proc. IAPR-TC7 Workshop, Graz, pages 229–244. R. Oldenbourg, München, 1996. 271

    Google Scholar 

  36. N. Vasconcelos and A. Lippman. A bayesian framework for semantic content characterization. In Proc. Intl. Conf. Computer Vision and Pattern Recognition CVPR, pages 566–571, 1998. 270

    Google Scholar 

  37. L.-X. Wang and J. M. Mendel. Generating fuzzy rules by learning from examples. IEEE Trans. Syst., Man, Cybern., 22(6):1414–1427, 1992. 272

    Article  MathSciNet  Google Scholar 

  38. L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Systems, Man &amt; Cybernetics, 3:28–44, 1973. 282

    MATH  MathSciNet  Google Scholar 

  39. L. A. Zadeh. Computing with words. IEEE Transactions on Fuzzy Systems, 4:103–111, 1996. 269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kruse, R., Klose, A. (2000). Information Mining: Applications in Image Processing. In: Hlaváč, V., Jeffery, K.G., Wiedermann, J. (eds) SOFSEM 2000: Theory and Practice of Informatics. SOFSEM 2000. Lecture Notes in Computer Science, vol 1963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44411-4_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44411-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41348-6

  • Online ISBN: 978-3-540-44411-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics