Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum Pushdown Automata

  • Conference paper
  • First Online:
SOFSEM 2000: Theory and Practice of Informatics (SOFSEM 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1963))

Abstract

Quantum finite automata, as well as quantum pushdown automata were first introduced by C. Moore, J. P. Crutchfield [13]. In this paper we introduce the notion of quantum pushdown automata (QPA) in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of [11]. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines [4]. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, two of them are not recognizable by deterministic pushdown automata and one seems to be not recognizable by probabilistic pushdown automata as well.

Research partially supported by the Latvian Council of Science, grant 96-0282 and grant for Ph.D. students; European Commission, contract IST-1999-11234; Swedish institute, project ML2000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Ambainis, R. Bonner, R. Freivalds, M. Golovkins, M. Karpinski: Quantum Finite Multitape Automata. Lecture Notes in Computer Science, 1999, Vol. 1725, pp. 340–348. 345

    Google Scholar 

  2. A. Ambainis, R. Bonner, R. Freivalds, A. Kikusts: Probabilities to Accept Languages by Quantum Finite Automata. Lecture Notes in Computer Science, 1999, Vol. 1627, pp. 174–183. 337

    Google Scholar 

  3. A. Ambainis, R. Freivalds: 1-Way Quantum Finite Automata: Strengths, Weaknesses and Generalizations. Proc. 39th FOCS, 1998, pp. 332–341. 337

    Google Scholar 

  4. E. Bernstein, U. Vazirani: Quantum Complexity Theory. SIAM Journal on Computing, 26:1411–1473, 1997. 336, 340

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Brodsky, N. Pippenger: Characterizations of 1-Way Quantum Finite Automata. http://xxx.lanl.gov/abs/quant-ph/9903014. 337

  6. D. Deutsch: Quantum Theory, the Church-Turing principle and the Universal Quantum Computer. Proc. Royal Society London, A400, 1985. pp. 96–117. 336

    Google Scholar 

  7. C. Dürr, M. Santha: A Decision Procedure for Unitary Linear Quantum Cellular Automata. Proc. 37th FOCS, 1996, pp. 38–45. 337

    Google Scholar 

  8. R. Feynman: Simulating Physics with Computers. International Journal of Theoretical Physics, 1982, vol. 21, No 6/7, pp. 467–488. 336

    Article  MathSciNet  Google Scholar 

  9. J. Gruska: Quantum Challenges. Lecture Notes in Computer Science, 1999, Vol. 1725, pp. 1–28. 336

    Google Scholar 

  10. E. Gurari: An Introduction to the Theory of Computation. Computer Science Press, 1989. 338, 344

    Google Scholar 

  11. A. Kondacs, J. Watrous: On The Power of Quantum Finite State Automata. In Proc. 38th FOCS, 1997, pp. 66–75. 336, 337, 343

    Google Scholar 

  12. M. Kravtsev: Quantum Finite One-Counter Automata. Lecture Notes in Computer Science, 1999, Vol. 1725, pp. 431–440. 344

    Google Scholar 

  13. C. Moore, J. P. Crutchfield: Quantum Automata and Quantum Grammars. http://xxx.lanl.gov/abs/quant-ph/9707031. 336, 337

  14. P. W. Shor: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. Proc. 35th FOCS, 1994, pp. 124–134. 336

    Google Scholar 

  15. M. Valdats: The Class of Languages Recognizable by 1-Way Quantum Finite Automata is not Closed Under Union. Proc. Quantum Computation and Learning. International Workshop, 2000, pp. 52–64. E-print: http://xxx.lanl.gov/abs/quantph/0001005. 337

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golovkins, M. (2000). Quantum Pushdown Automata. In: Hlaváč, V., Jeffery, K.G., Wiedermann, J. (eds) SOFSEM 2000: Theory and Practice of Informatics. SOFSEM 2000. Lecture Notes in Computer Science, vol 1963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44411-4_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44411-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41348-6

  • Online ISBN: 978-3-540-44411-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics