Abstract
The paper presents new measures for characterizing sequences of user actions. They are aimed at categorizing user behavior on intranet sites. Their relevance is evaluated using different encoding and clustering algorithms. New criteria are introduced for comparing clustering methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen M., Park J., Yu P., Data mining for path traversal patterns in a web environment, 16th ICDCP, 1996.
Catledge L., Pitkow J.E.: Characterizing Browsing Strategies in the world wide web, Comp. Net. and ISDN systems, 27, 1995.
The comprehensive r archive network, http://www.//r-project.org
Cheeseman P., Kelly J., Self M., Stutz J., Taylor W., Freeman D., Autoclass: a Bayesian classification system, Fifth ICML. Morgan Kaufmann, 1988.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Draier, T., Gallinari, P. (2001). Characterizing Sequences of User Actions for Access Logs Analysis. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds) User Modeling 2001. UM 2001. Lecture Notes in Computer Science(), vol 2109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44566-8_29
Download citation
DOI: https://doi.org/10.1007/3-540-44566-8_29
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42325-6
Online ISBN: 978-3-540-44566-1
eBook Packages: Springer Book Archive