Abstract
Information given in topographic map legends or in GIS models is often insufficient to recognize interesting geographical patterns. Some prototypes of GIS have already been extended with a knowledge-base and some reasoning capabilities to support sophisticated map interpretation processes. Nevertheless, the acquisition of the necessary knowledge is still an open problem to which machine learning techniques can provide a solution. This paper presents an application of first-order rule induction to pattern recognition in topographic maps. Research issues related to the extraction of first-order logic descriptions from vectorized topographic maps are introduced. The recognition of morphological patterns in topographic maps of the Apulia region is presented as a case study.
Preview
Unable to display preview. Download preview PDF.
References
Barbanente, A., Borri, D., Esposito, F., Leo, P., Maciocco, G., Selicato, F.: Automatically acquiring knowledge by digital maps in artificial intelligence planning techniques. In: Frank, A.U., Campari, L, Formentini, U. (eds.): Theories and Methods of Spatio-Temporal Reasoning. Lecture Notes in Artificial Intelligence, Vol. 482. Springer-verlag, Berlin (1992) 89–100.
Borri D. et al.: Green: Building an Operational Prototype of Expert System for Planning Control in Urban Environment. Proceedings of the European Conference of the Regional Science Association, Instanbul (1990).
Centeno J.S.: Segmentation of Thematic Maps Using Colour and Spatial Attributes. In: Tombre, K., Chhabra, A.K. (eds.): Graphics Recognition Algorithms and Systems. Lecture Notes in Computer Science, Vol. 1389, Springer-Verlag, Berlin (1998) 221–230.
de Raedt, L.: Interactive theory revision: An inductive logic programming approach. Academic Press, London (1992).
den Hartog, J., Holtrop, B.T., de Gunst, M.E., Oosterbroek E.P.: Interpretation of Geographic Vector-Data in Practice.In Chhabra, A.K., Dori, D. (eds.): Graphics Recognition Recent Advances. Lecture Notes in Computer Science, Vol. 1941, Springer-Verlag, Berlin (1999) 50–57
Dupon, F., Deseilligny, M.P., Gondran, M.: Automatic Interpretation of Scanned maps: Reconstruction of Contour Lines.In:Tombre, K., Chhabra, A.K.(eds.):Graphics Recognition: Algorithms and Systems. Lecture Notes in Computer Science, Vol. 1389, Springer-Verlag, Berlin (1998) pp. 1–8.
Egenhofer, M.J., Herring, J.R.: Categorising topological spatial relations between point, line, and area objects. In: Egenhofer, M.J., Mark, D.M., Herring, J.R. (eds.): The 9-intersection: formalism and its use for natural language spatial predicates. Technical Report NCGIA 94-1, Santa Barbara, (1994).
Esposito, F., Lanza, A., Malerba, D., Semeraro, G.: Machine learning formap interpretation: an intelligent tool for environmental planning. Applied Artificial Intelligence 11(7–8) (1997) 673–695.
Esposito, F., Malerba, D., Lisi, F.A.: Induction of Recursive Theories in the Normal ILP Setting: IssuesandSolutions. In: Cussens, J., Frish, A. (eds.): InductiveLogic Programming, Vol. 1866, Springer, Berlin (2000) 93–111.
Gaede, V., Günther O.: Multidimensional Access Methods, ACM Computing Surveys, 30(2) (1998) 170–231.
Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, Addison-Wesley, Reading, MA (1992).
Keates, J.S.: Map understanding. Second Editon. Longman, Edinburgh (1996).
Malerba, D., Esposito, F., Semeraro, G., Caggese, S.: Handling Continuous Data in Top-down Induction of First-order Rules. In: Lenzerini, M. (ed.): AI*IA 97: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence,Vol. 1321. Springer, Berlin (1997) 24–35.
Malerba, D., Esposito, F., Lisi, F.A.: Learning Recursive Theories with ATRE. In: Prade, H. (ed.): Proceedings of the 13th European Conf. on Artificial Intelligence, Wiley, Chichester (1998) 435–439.
Malerba, D., Esposito, F., Lanza, A., Lisi, F.A.: Discovering Geographic Knowledge: The INGENS System. In: Ras, Z.W., Ohsuga, S. (eds.): Foundations of Intelligent Information Systems, Lecture Notes in Artificial Intelligence, 1321, Springer, Berlin (2000) 40–48.
Mayer, H.: Is the knowledge in map-legends and GIS-models suitablefor image understanding? International Archives of Photogrammetry and Remote Sensing 30(4) (1994) 52–59.
Open GISConsortium: TheOpenGISAbstractSpecification (1996), http://www.opengis.org/public/abstract.html.
Pierrot Deseilligny, M., Le Men, H., Stamon, G.: Characters String Recognition on Maps: A Method for High LevelReconstruction. Proceedingsof theThird International Conference on Document Analysis and Recognition, Vol. 1. (1995) 249–252.
Rouveirol, C: Flattening and saturation: Two representation changes for generalization. Machine Learning 14(2) (1994) 219–232.
Smith, T., Donna, P., Sudhakar, M., Pankaj, A.: KBGIS-H:AKnowledge-Based Geographic Information System. International Journal of Geographic Information Systems 1(2) (1987) 149–172.
Sondheim, M., Gardels, K., Buehler, K.: GISInteroperability. In: Longley, P.A., Goodchild, M.F., Maguire, DJ., Rhinds, D.W. (eds.): Geographical Information Systems, Principles and Technical Issues, Vol. 1. John Wiley &s Sons (1999) 347–358.
Tou, J.T., Gonzales, R.C: Pattern Recognition Principles. Addison-Wesley, Reading, MA (1974).
Yamada, H., Yamamoto, K., Hosokawa, K.: Directional Mathematical Morphology and Reformalized Hough Transformation for the Analysis of Topographic Maps, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4) (1993) 380–387.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Malerba, D., Esposito, F., Lanza, A., Lisi, F.A. (2001). First-Order Rule Induction for the Recognition of Morphological Patterns in Topographic Maps. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2001. Lecture Notes in Computer Science(), vol 2123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44596-X_8
Download citation
DOI: https://doi.org/10.1007/3-540-44596-X_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42359-1
Online ISBN: 978-3-540-44596-8
eBook Packages: Springer Book Archive