Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

First-Order Rule Induction for the Recognition of Morphological Patterns in Topographic Maps

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2123))

  • 1279 Accesses

Abstract

Information given in topographic map legends or in GIS models is often insufficient to recognize interesting geographical patterns. Some prototypes of GIS have already been extended with a knowledge-base and some reasoning capabilities to support sophisticated map interpretation processes. Nevertheless, the acquisition of the necessary knowledge is still an open problem to which machine learning techniques can provide a solution. This paper presents an application of first-order rule induction to pattern recognition in topographic maps. Research issues related to the extraction of first-order logic descriptions from vectorized topographic maps are introduced. The recognition of morphological patterns in topographic maps of the Apulia region is presented as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbanente, A., Borri, D., Esposito, F., Leo, P., Maciocco, G., Selicato, F.: Automatically acquiring knowledge by digital maps in artificial intelligence planning techniques. In: Frank, A.U., Campari, L, Formentini, U. (eds.): Theories and Methods of Spatio-Temporal Reasoning. Lecture Notes in Artificial Intelligence, Vol. 482. Springer-verlag, Berlin (1992) 89–100.

    Google Scholar 

  2. Borri D. et al.: Green: Building an Operational Prototype of Expert System for Planning Control in Urban Environment. Proceedings of the European Conference of the Regional Science Association, Instanbul (1990).

    Google Scholar 

  3. Centeno J.S.: Segmentation of Thematic Maps Using Colour and Spatial Attributes. In: Tombre, K., Chhabra, A.K. (eds.): Graphics Recognition Algorithms and Systems. Lecture Notes in Computer Science, Vol. 1389, Springer-Verlag, Berlin (1998) 221–230.

    Google Scholar 

  4. de Raedt, L.: Interactive theory revision: An inductive logic programming approach. Academic Press, London (1992).

    Google Scholar 

  5. den Hartog, J., Holtrop, B.T., de Gunst, M.E., Oosterbroek E.P.: Interpretation of Geographic Vector-Data in Practice.In Chhabra, A.K., Dori, D. (eds.): Graphics Recognition Recent Advances. Lecture Notes in Computer Science, Vol. 1941, Springer-Verlag, Berlin (1999) 50–57

    Chapter  Google Scholar 

  6. Dupon, F., Deseilligny, M.P., Gondran, M.: Automatic Interpretation of Scanned maps: Reconstruction of Contour Lines.In:Tombre, K., Chhabra, A.K.(eds.):Graphics Recognition: Algorithms and Systems. Lecture Notes in Computer Science, Vol. 1389, Springer-Verlag, Berlin (1998) pp. 1–8.

    Google Scholar 

  7. Egenhofer, M.J., Herring, J.R.: Categorising topological spatial relations between point, line, and area objects. In: Egenhofer, M.J., Mark, D.M., Herring, J.R. (eds.): The 9-intersection: formalism and its use for natural language spatial predicates. Technical Report NCGIA 94-1, Santa Barbara, (1994).

    Google Scholar 

  8. Esposito, F., Lanza, A., Malerba, D., Semeraro, G.: Machine learning formap interpretation: an intelligent tool for environmental planning. Applied Artificial Intelligence 11(7–8) (1997) 673–695.

    Article  Google Scholar 

  9. Esposito, F., Malerba, D., Lisi, F.A.: Induction of Recursive Theories in the Normal ILP Setting: IssuesandSolutions. In: Cussens, J., Frish, A. (eds.): InductiveLogic Programming, Vol. 1866, Springer, Berlin (2000) 93–111.

    Chapter  Google Scholar 

  10. Gaede, V., Günther O.: Multidimensional Access Methods, ACM Computing Surveys, 30(2) (1998) 170–231.

    Article  Google Scholar 

  11. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, Addison-Wesley, Reading, MA (1992).

    Google Scholar 

  12. Keates, J.S.: Map understanding. Second Editon. Longman, Edinburgh (1996).

    Google Scholar 

  13. Malerba, D., Esposito, F., Semeraro, G., Caggese, S.: Handling Continuous Data in Top-down Induction of First-order Rules. In: Lenzerini, M. (ed.): AI*IA 97: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence,Vol. 1321. Springer, Berlin (1997) 24–35.

    Google Scholar 

  14. Malerba, D., Esposito, F., Lisi, F.A.: Learning Recursive Theories with ATRE. In: Prade, H. (ed.): Proceedings of the 13th European Conf. on Artificial Intelligence, Wiley, Chichester (1998) 435–439.

    Google Scholar 

  15. Malerba, D., Esposito, F., Lanza, A., Lisi, F.A.: Discovering Geographic Knowledge: The INGENS System. In: Ras, Z.W., Ohsuga, S. (eds.): Foundations of Intelligent Information Systems, Lecture Notes in Artificial Intelligence, 1321, Springer, Berlin (2000) 40–48.

    Google Scholar 

  16. Mayer, H.: Is the knowledge in map-legends and GIS-models suitablefor image understanding? International Archives of Photogrammetry and Remote Sensing 30(4) (1994) 52–59.

    Google Scholar 

  17. Open GISConsortium: TheOpenGISAbstractSpecification (1996), http://www.opengis.org/public/abstract.html.

  18. Pierrot Deseilligny, M., Le Men, H., Stamon, G.: Characters String Recognition on Maps: A Method for High LevelReconstruction. Proceedingsof theThird International Conference on Document Analysis and Recognition, Vol. 1. (1995) 249–252.

    Article  Google Scholar 

  19. Rouveirol, C: Flattening and saturation: Two representation changes for generalization. Machine Learning 14(2) (1994) 219–232.

    Article  MATH  Google Scholar 

  20. Smith, T., Donna, P., Sudhakar, M., Pankaj, A.: KBGIS-H:AKnowledge-Based Geographic Information System. International Journal of Geographic Information Systems 1(2) (1987) 149–172.

    Article  Google Scholar 

  21. Sondheim, M., Gardels, K., Buehler, K.: GISInteroperability. In: Longley, P.A., Goodchild, M.F., Maguire, DJ., Rhinds, D.W. (eds.): Geographical Information Systems, Principles and Technical Issues, Vol. 1. John Wiley &s Sons (1999) 347–358.

    Google Scholar 

  22. Tou, J.T., Gonzales, R.C: Pattern Recognition Principles. Addison-Wesley, Reading, MA (1974).

    MATH  Google Scholar 

  23. Yamada, H., Yamamoto, K., Hosokawa, K.: Directional Mathematical Morphology and Reformalized Hough Transformation for the Analysis of Topographic Maps, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4) (1993) 380–387.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malerba, D., Esposito, F., Lanza, A., Lisi, F.A. (2001). First-Order Rule Induction for the Recognition of Morphological Patterns in Topographic Maps. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2001. Lecture Notes in Computer Science(), vol 2123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44596-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44596-X_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42359-1

  • Online ISBN: 978-3-540-44596-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics