Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Euclidean Embeddings and Bandwidth Minimization

  • Conference paper
  • First Online:
Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques (RANDOM 2001, APPROX 2001)

Abstract

We study Euclidean embeddings of Euclidean metrics and present the following four results: (1) an O(log3 n√log log n) approximation for minimum bandwidth in conjunction with a semi-definite relaxation, (2) an O(log3 n) approximation in O(n log n) time using a new constraint set, (3) a lower bound of Θ(√log n) on the least possible volume distortion for Euclidean metrics, (4) a new embedding with O(√log n) distortion of point-to-subset distances.

Supported in part by NSF Career Award CCR-9875024.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Blum, G. Konjevod, R. Ravi, and S. Vempala, “Semi-Definite Relaxations for Minimum Bandwidth and other Vertex-Ordering Problems,” Proc. 30th ACM Symposium on the Theory of Computing, 1998.

    Google Scholar 

  2. J. Bourgain, “On Lipshitz embedding of finite metric spaces in Hilbert space,” Israel J. Math. 52 (1985) 46–52.

    Article  MATH  MathSciNet  Google Scholar 

  3. U. Feige, “Approximating the bandwidth via volume respecting embeddings,” in Proc. 30th ACM Symposium on the Theory of Computing, 1998.

    Google Scholar 

  4. U. Feige, “Improved analysis of the volume distortion of the random subsets embedding,” Manuscript.

    Google Scholar 

  5. C. H. Papadimitriou, The NP-completeness of the bandwidth minimization problem, Computing, 16: 263–270, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Rao, “Small distortion and volume preserving embeddings for planar and Euclidean metrics,” Proc. of Symposium on Computational Geometry, 1999.

    Google Scholar 

  7. S. Vempala, “Random Projection: A new approach to VLSI layout,” Proc. of FOCS 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dunagan, J., Vempala, S. (2001). On Euclidean Embeddings and Bandwidth Minimization. In: Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques. RANDOM APPROX 2001 2001. Lecture Notes in Computer Science, vol 2129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44666-4_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-44666-4_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42470-3

  • Online ISBN: 978-3-540-44666-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics