Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Self Organizing Map and Sammon Mapping for Asymmetric Proximities

  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 2001 (ICANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2130))

Included in the following conference series:

  • 3503 Accesses

Abstract

Self Organizing Maps (SOM) and Sammon Mapping (SM) are two information visualization techniques widely used in the data mining community. These techniques assume that the similarity matrix for the data set under consideration is symmetric. However there are many interesting problems where asymmetric proximities arise, like text mining problems are. In this work we propose modified versions of SOM and SM to deal with data where the proximity matrix is asymmetric. The algorithms are tested using a real document database, and performance is reported using appropriate measures. As a result, the asymmetric algorithms proposed outperform their symmetric counterparts.

Financial support from DGICYT grant BEC2000-0167 (Spain) is gratefully appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, 1999.

    Google Scholar 

  2. J. C. Bezdek and N. R. Pal. ”An Index of Topological Preservation for Feature Extraction”, Pattern Recognition, 28(3):381–391, 1995.

    Article  Google Scholar 

  3. G.A. Carpenter and S. Grossberg and N. Markuzon and J.H. Reynolds and D.B. Rosen. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, 3(5):698–713, 1992.

    Article  Google Scholar 

  4. H. Chen, B. Schatz, T. Ng, J. Martinez, A. Kirchhoff and C. Lin. A Paralell Computing Approach to Creating Engineering Concept Spaces for Semantic Retrieval: The Illinois Digital Library Initiative Project. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):775–782, August 1996.

    Google Scholar 

  5. H. Chen and A. L. Houston. Internet Browsing and Searching: User Evaluations of Category Map and Concept Space Techniques. Journal of the American Society for Information Science, 49(7):582–603, 1998.

    Google Scholar 

  6. T. F. Cox and M. A. A. Cox, Multidimensional Scaling, Chapman and Hall/CRC, 2nd ed., USA, 2001.

    Google Scholar 

  7. I. Dagan, L. Lee and F. C. N. Pereira. Similarity-Based Models of Word Coocurrence Probabilities. Machine Learning, 34:48–69, 1999.

    Article  Google Scholar 

  8. S. Kaski. Dimensionality Reduction by Random Mapping: Fast Similarity Computation for Clustering. 1:413–418, Proceedings of IJCNN’98.

    Google Scholar 

  9. T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, J. Honkela, V. Paatero and A. Saarela. Organization of a Massive Document Collection. IEEE Transactions on Neural Networks, 11(3):574–585, May 2000.

    Google Scholar 

  10. A. Kopcsa and E. Schievel. Science and Technology Mapping: A New Iteration Model for Representing Multidimensional Relationships. Journal of the American Society for Information Science, 49(1): 7–17, 1998.

    Article  Google Scholar 

  11. B. Kosko. Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

    Google Scholar 

  12. David D. Lewis. The Reuters-21578, Distribution 1.0 test collection. AT&T Labs. Available at http://www.research.att.comĺewis

  13. F. Mulier and V. Cherkassky. Self-Organization as an Iterative Kernel Smoothing Process. Neural Computation, 7:1165–1177, 1995.

    Article  Google Scholar 

  14. A. Muñoz. Extracting term associations from a text database using a hierarchical ART architecture. Proceedings of the ICANN 96, LNCS 866:376–385, Springer-Verlag.

    Google Scholar 

  15. A. Muñoz. Compound key word generation from document databases using a hierarchical clustering ART model. Journal of Intelligent Data Analysis, 1(1), 1997.

    Google Scholar 

  16. M. Rorvig. Images of Similarity: A Visual Exploration of Optimal Similarity Metrics and Scaling Properties of TREC Topic-Document Sets. Journal of the American Society for Information Science. 50(8):639–651, 1999.

    Article  Google Scholar 

  17. J.W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, 18(5):401–409, 1969.

    Article  Google Scholar 

  18. B. Zielman and W.J. Heiser. Models for asymmetric proximities. British Journal of Mathematical and Statistical Psychology, 49:127–146, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin-Merino, M., Muñoz, A. (2001). Self Organizing Map and Sammon Mapping for Asymmetric Proximities. In: Dorffner, G., Bischof, H., Hornik, K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44668-0_60

Download citation

  • DOI: https://doi.org/10.1007/3-540-44668-0_60

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42486-4

  • Online ISBN: 978-3-540-44668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics