Abstract
We describe a class of simple transitive semiautomata that exhibit full exponential blow-up during deterministic simulation. For arbitrary semiautomata we show that it is PSPACE-complete to decide whether the size of the accessible part of their power automata exceeds a given bound. We comment on the application of these results to the study of cellular automata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M.-P. Beal and D. Perrin. Symbolic dynamics and finite automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 2, chapter 10. Springer Verlag, 1997.
D. Beauquier. Minimal automaton for a factorial, transitive, rational language. Theoretical Computer Science, 67:65–73, 1989.
W. Brauer. On minimizing finite automata. EATCS Bulletin, 39:113–116, 1988.
M. Delorme and J. Mazoyer. Cellular Automata: A Parallel Model, volume 460 of Mathematics and Its Applications. Kluwer Academic Publishers, 1999.
R. Fischer. Sofic systems and graphs. Monatshefte für Mathematik, 80:179–186, 1975.
M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
E. Goles, A. Maass, and S. Martinez. On the limit set of some universal cellular automata. Theoretical Computer Science, 110:53–78, 1993.
J. E. Hanson and J. P. Crutchfield. Computational mechanics of cellular automata. Technical Report 95-10-095, Santa Fe Institute, 1995.
G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory, 3:320–375, 1969.
L. Hurd. Formal language characterizations of cellular automata limit sets. Complex Systems, 1(1):69–80, 1987.
D. Kozen. Lower bounds for natural proof systems. In Proc. 18-th Ann. Symp. on Foundations of Computer Science, pages 254–266. IEEE Computer Society, 1977.
D. Lind and B. Marcus. Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995.
J. E. Pin. Varieties of Formal Languages. Foundations of Computer Science. Plenum Publishing Corporation, 1986.
B. Ravikumar. Private communication, 1994.
A. Salomaa. On the composition of functions of several variables ranging over a finite set. Ann. Univ. Turkuensis, 41, 1960.
A. Salomaa. Many-valued truth functions, černý’s conjecture and road coloring. Bulletin EATCS, (68):134–150, June 1999.
K. Sutner. Linear cellular automata and Fischer automata. Parallel Computing, 23(11):1613–1634, 1997.
K. Sutner. Linear Cellular Automata and De Bruijn Automata, pages 303–320. Volume 460 of Mathematics and Its Applications [4], 1999.
R. A. Trakhtenbrot and Y. M. Barzdin. Finite Automata: Behavior and Sythesis. North-Holland, 1973.
N. Vorobev. On symmetric associative systems. Leningrad Gos. Ped. Inst., Uch. Zap., 89:161–166, 1953.
B. Weiss. Subshifts of finite type and sofic systems. Monatshefte für Mathematik, 77:462–474, 1973.
S. Wolfram. Twenty problems in the theory of cellular automata. Physica Scripta, T9:170–183, 1985.
S. Wolfram. Theory and Applications of Cellular Automata. World Scientific, 1986.
Sheng Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, chapter 2. Springer Verlag, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sutner, K. (2001). The Size of Power Automata. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_58
Download citation
DOI: https://doi.org/10.1007/3-540-44683-4_58
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42496-3
Online ISBN: 978-3-540-44683-5
eBook Packages: Springer Book Archive