Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Size of Power Automata

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2001 (MFCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

Abstract

We describe a class of simple transitive semiautomata that exhibit full exponential blow-up during deterministic simulation. For arbitrary semiautomata we show that it is PSPACE-complete to decide whether the size of the accessible part of their power automata exceeds a given bound. We comment on the application of these results to the study of cellular automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.-P. Beal and D. Perrin. Symbolic dynamics and finite automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 2, chapter 10. Springer Verlag, 1997.

    Google Scholar 

  2. D. Beauquier. Minimal automaton for a factorial, transitive, rational language. Theoretical Computer Science, 67:65–73, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Brauer. On minimizing finite automata. EATCS Bulletin, 39:113–116, 1988.

    Google Scholar 

  4. M. Delorme and J. Mazoyer. Cellular Automata: A Parallel Model, volume 460 of Mathematics and Its Applications. Kluwer Academic Publishers, 1999.

    Google Scholar 

  5. R. Fischer. Sofic systems and graphs. Monatshefte für Mathematik, 80:179–186, 1975.

    Article  MATH  Google Scholar 

  6. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

    Google Scholar 

  7. E. Goles, A. Maass, and S. Martinez. On the limit set of some universal cellular automata. Theoretical Computer Science, 110:53–78, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. E. Hanson and J. P. Crutchfield. Computational mechanics of cellular automata. Technical Report 95-10-095, Santa Fe Institute, 1995.

    Google Scholar 

  9. G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory, 3:320–375, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Hurd. Formal language characterizations of cellular automata limit sets. Complex Systems, 1(1):69–80, 1987.

    MATH  MathSciNet  Google Scholar 

  11. D. Kozen. Lower bounds for natural proof systems. In Proc. 18-th Ann. Symp. on Foundations of Computer Science, pages 254–266. IEEE Computer Society, 1977.

    Google Scholar 

  12. D. Lind and B. Marcus. Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995.

    Google Scholar 

  13. J. E. Pin. Varieties of Formal Languages. Foundations of Computer Science. Plenum Publishing Corporation, 1986.

    Google Scholar 

  14. B. Ravikumar. Private communication, 1994.

    Google Scholar 

  15. A. Salomaa. On the composition of functions of several variables ranging over a finite set. Ann. Univ. Turkuensis, 41, 1960.

    Google Scholar 

  16. A. Salomaa. Many-valued truth functions, černý’s conjecture and road coloring. Bulletin EATCS, (68):134–150, June 1999.

    Google Scholar 

  17. K. Sutner. Linear cellular automata and Fischer automata. Parallel Computing, 23(11):1613–1634, 1997.

    Article  MathSciNet  Google Scholar 

  18. K. Sutner. Linear Cellular Automata and De Bruijn Automata, pages 303–320. Volume 460 of Mathematics and Its Applications [4], 1999.

    Google Scholar 

  19. R. A. Trakhtenbrot and Y. M. Barzdin. Finite Automata: Behavior and Sythesis. North-Holland, 1973.

    Google Scholar 

  20. N. Vorobev. On symmetric associative systems. Leningrad Gos. Ped. Inst., Uch. Zap., 89:161–166, 1953.

    MathSciNet  Google Scholar 

  21. B. Weiss. Subshifts of finite type and sofic systems. Monatshefte für Mathematik, 77:462–474, 1973.

    Article  MATH  Google Scholar 

  22. S. Wolfram. Twenty problems in the theory of cellular automata. Physica Scripta, T9:170–183, 1985.

    Article  MathSciNet  Google Scholar 

  23. S. Wolfram. Theory and Applications of Cellular Automata. World Scientific, 1986.

    Google Scholar 

  24. Sheng Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, chapter 2. Springer Verlag, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sutner, K. (2001). The Size of Power Automata. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics