Abstract
We develop fast algorithms for computing the linking number of a simplicial complex within a filtration. We give experimental results in applying our work toward the detection of non-trivial tangling in biomolecules, modeled as alpha complexes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Colin C. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. W. H. Freeman and Company, New York, NY, 1994.
Richard A. Bissell, Emilio Cordova, Angel E. Kaifer, and J. Fraser Stoddart. A checmically and electrochemically switchable molecular shuttle. Nature, 369:133–137, 1994.
C. P. Collier, E. W. Wong, Belohradský, F. M. Raymo, J. F Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath. Electronically configurable moleculear-based logic gates. Science, 285:391–394, 1999.
Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, MA, 1994.
C. J.Ã. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom. Design, 12:771–784, 1995.
H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. In Proc. 41st Ann. IEEESympos. Found. Comput. Sci., pages 454–463, 2000.
H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graphics, 13:43–72, 1994.
Erica Flapan. When Topology Meets Chemistry: A Topological Look at Molecular Chirality. Cambridge University Press, New York, NY, 2000.
P. J. Giblin. Graphs, Surfaces, and Homology. Chapman and Hall, New York, NY, second edition, 1981.
Wolfgang Haken. Theorie der Normalflächen. Acta Math., 105:245–375, 1961.
Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors. SIAMJ. Comput., 13:338–355, 1984.
Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of knot and link problems. J. ACM, 46:185–211, 1999.
William Jaco and Jeffrey L. Tollefson. Algorithms for the complete decomposition of a closed 3-manifold. Illinois J. Math., 39:358–406, 1995.
Andrew R. Leach. Molecular Modeling, Principles and Applications. Pearson Education Limited, Harlow, England, 1996.
J.R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City, California, 1984.
RCSB. Protein data bank. http://www.rcsb.org/pdb/.
Dale Rolfsen. Knots and Links. Publish or Perish, Inc., Houston, Texas, 1990.
H. Seifert. Über das Geschlecht von Knoten. Math. Annalen, 110:571–592, 1935.
William R. Taylor. A deeply knotted protein structure and how it might fold. Nature, 406:916–919, 2000.
Jan van Leeuwen. Finding lowest common ancestors in less than logarithmic time. Unpublished report.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Edelsbrunner, H., Zomorodian, A. (2001). Computing Linking Numbers of a Filtration. In: Gascuel, O., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2001. Lecture Notes in Computer Science, vol 2149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44696-6_9
Download citation
DOI: https://doi.org/10.1007/3-540-44696-6_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42516-8
Online ISBN: 978-3-540-44696-5
eBook Packages: Springer Book Archive