Abstract
A heuristic method to construct uniform approximations to analytic transcendental functions is developed as a generalization of the Hermite-Padé interpolation to infinite intervals. The resulting uniform approximants are built from elementary functions using known series and asymptotic expansions of the given transcendental function. In one case (Lambert’s W function) we obtained a uniform approximation valid in the entire complex plane. Several examples of the application of this method to selected transcendental functions are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press, 1999.
M. Abramowitz and I. Stegun, Handbook of special functions, National Bureau of Standards, 1964.
P. Borwein, Canad. Math. Soc. Conf. Proc., 27 (2000), 29.
C. J. Lanczos, J. SIAM of Num. Anal. Ser. B, 1 (1964), 86; J. L. Spouge, J. SIAM of Num. Anal. 31 (1994), 931.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Winitzki, S. (2003). Uniform Approximations for Transcendental Functions. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44839-X_82
Download citation
DOI: https://doi.org/10.1007/3-540-44839-X_82
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40155-1
Online ISBN: 978-3-540-44839-6
eBook Packages: Springer Book Archive