Abstract
Images rendered with traditional computer graphics techniques, such as scanline rendering and ray tracing, appear focused at all depths. However, there are advantages to having blur, such as adding realism to a scene or drawing attention to a particular place in a scene. In this paper we describe the optics underlying camera models that have been used in computer graphics, and present object space techniques for rendering with those models. In our companion paper [3], we survey image space techniques to simulate these models. These techniques vary in both speed and accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
David A. Atchison and George Smith. Optics of the Human Eye. Butterworth-Heinemann Ltd., Woburn, Mass., 2000.
Brian A. Barsky, Billy P. Chen, Alexander C. Berg, Maxence Moutet, Daniel D. Garcia, and Stanley A. Klein. Incorporating camera models, ocular models, and actual patient eye data for photo-realistic and vision-realistic rendering. Submitted for publication, 2003.
Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jeffrey A. Pang, and Meng Yu. Camera models and optical systems used in computer graphics: Part II, Image based techniques. In Proceedings of the 2003 International Conference on Computational Science and its Applications (ICCSA’03), Montréal, May 18–21 2003. Second International Workshop on Computer Graphics and Geometric Modeling (CGGM’2003), Springer-Verlag Lecture Notes in Computer Science (LNCS), Berlin/Heidelberg. (These proceedings).
Robert L. Cook. Stochastic sampling in computer graphics. ACM Transactions on Graphics, 5(1): 51–72, January 1986.
Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In Hank Christiansen, editor, ACM SIGGRAPH 1984 Conference Proceedings, pages 137–145, Minneapolis, July 23–-27 1984.
Mark A. Z. Dippe and Erling H. Wold. Antialiasing through stochastic sampling. In Brian A. Barsky, editor, ACM SIGGRAPH 1985 Conference Proceedings, pages 69–78, San Francisco, July 22–26 1985.
James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and Practice, 2nd Edition. Addison-Wesley Publishing Co., Reading, Mass., 1990.
Francis A. Jenkins and Harvey E. White. Fundamentals of Optics. McGraw-Hill, Inc., New York, 1976.
James T. Kajiya. The rendering equation. In ACM SIGGRAPH 1986 Conference Proceedings, pages 143–150, Dallas, 1986.
Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model for computer graphics. In Robert L. Cook, editor, ACM SIGGRAPH 1995 Conference Proceedings, pages 317–324, Los Angeles, August 6–11 1995.
Mark E. Lee, Richard A. Redner, and Samuel P. Uselton. Statistically optimized sampling for distributed ray tracing. In Brian A. Barsky, editor, ACM SIGGRAPH 1985 Conference Proceedings, pages 61–67, San Francisco, July 22–26 1985.
Michael Potmesil and Indranil Chakravarty. Synthetic image generation with a lens and aperture camera model. ACM Transactions on Graphics, 1(2):85–108, April 1982. (Original version in ACM SIGGRAPH 1981 Conference Proceedings, Aug. 1981, pp. 297-305).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barsky, B.A., Horn, D.R., Klein, S.A., Pang, J.A., Yu, M. (2003). Camera Models and Optical Systems Used in Computer Graphics: Part I, Object-Based Techniques. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_26
Download citation
DOI: https://doi.org/10.1007/3-540-44842-X_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40156-8
Online ISBN: 978-3-540-44842-6
eBook Packages: Springer Book Archive