Abstract
This paper presents a new evolutionary procedure to design optimal networks of Radial Basis Functions (RBFs). It defines a self-organizing process into a population of RBFs based on the estimation of the fitness for each neuron in the population, and on the use of operators that, according to a set of fuzzy rules, transform the RBFs. This way, it has been possible to define cooperation, speciation, and niching features in the evolution of the population.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angeline, P.J.; Saunders, G.M.; Pollack, J.B.:“An evolutionary algorithm that constructs recurrent neural networks”. IEEE Trans. Neural Networks, Vol.5, No.1, pp.54–65. January, 1994.
V. Cherkassky, D. Gehring, F. Mulier, “Comparison of adaptive methods for function estimation from samples”, IEE Trans. Neural Networks, 7(4), pp. 969–984, 1996.
Coello, C.C.:“An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the art and future trends”. Congress on Evolutionary Computation, CEC’99, pp.3–13, 1999
N. Garcia-Pedrajas, C. Hervas-Martínez, J. Muñoz-Pérez, “Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative networks)”, Neural Networks, vol. 15, pp. 1259–1278, 2002
González, J.; Rojas, I.; Pomares, H.; Ortega, J:“RBF Neural Networks, Multiobjective Optimization and Time Series Forecasting”, Lecture Notes in Computer Science, (2084), pp.498–505. 2001
Haykin, Neural Networks. A comprehensive foundation, 2nd. NJ: Prentice-Hall, 1999.
Mandani, E. H.; Assilian, S.:“An experitment in linguistic synthesys with a fuzzy logic controller”. Int. J. Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975
Maniezzo, V.:“Genetic evolution of the topology and weight distribution of neural networks”. IEEE Trans. on Neural Networks, Vol.5, No.1, pp.39–53. January, 1994.
Marquardt, D. W “An algorithm for least-squares estimation of non-linear inequalities,” SIAM J. Appl. Math., vol. 11, pp. 431–441, 1963.
Moody, J; Darken, C.: “Fast learning networks of locally-tuned processing units,” Neural Computation, vol. 3 n. 4 pp.579–588, 1991
Pomares, H.; Rojas, I.; Ortega, J.; González, J.; Prieto, A.: “A systematic approach to Self-Generating Fuzzy Rule-Table for Function Approximation”. IEEE Trans. Syst., Man, and Cyber., Part B, 30(3):431–447. 2000
Rivera, A.; Ortega, J.; Prieto A.:“Design of RBF networks by cooperative/competitive evolution of units” International Conference on Artificial Neural Networks and Genetic Algorithms, ICANNGA 2001. April 2001.
Rivera, A.; Ortega, J.; del Jesús, M.; González, J; “Optimización de RBFs mediante cooperación-competición de neuronas y algoritmos de minimización de error”. II Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados. MAEB03, Febrero 2003.
Smalz, R.; Conrad, M.:“Combining evolution with credit apportionment: a new learning algorithm for neural nets”. Neural Netwroks, Vol.7, No.2, pp.341–351, 1994.
Whitehead, B.A.; Choate, T.D.:“Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series prediction”. IEEE Trans. on Neural Networks, Vol.7, No.4, pp.869–880. July, 1996.
Widrow, B.; Lehr, M.A.:“30 Years of adaptative neural networks: perceptron, madaline and backpropagation”. Proceedings of the IEEE, Vol. 78 n. 9, September 1990.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rivera, A.J., Ortega, J., Rojas, I., del Jesús, M.J. (2003). Co-Evolutionary Algorithm for RBF by Self- Organizing Population of neurons. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_60
Download citation
DOI: https://doi.org/10.1007/3-540-44868-3_60
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40210-7
Online ISBN: 978-3-540-44868-6
eBook Packages: Springer Book Archive