Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Solving the Generalized Sylvester Equation with a Systolic Library

  • Conference paper
  • First Online:
Vector and Parallel Processing — VECPAR 2000 (VECPAR 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1981))

Included in the following conference series:

  • 2747 Accesses

Abstract

The study of the solution of the Generalized Sylvester Equation and other related equations is a good example of the role played by matrix arithmetic in the field of Modern Control Theory.We describe the work performed to develop systolic algorithms for solving this equation, in a fast and effective way. The presented results show that the design methodology used allowed us to propose the use of Systolic Libraries, that is, reusable systolic arrays that can be implemented taking profit of the use of FPGA technology. In this paper we show how it is feasible to solve the Generalized Sylvester Equation using basic modules of Linear Algebra that can be implemented on versatile systolic arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, E. et al.: LAPACK User’s Guide. SIAM Publications, Philadelphia. (1992)

    Google Scholar 

  2. Bertseklas, P.H., Tsisiklis, M.M.: Parallel and Distributed Computations. Prentice-Hall Int. Eds. (1989)

    Google Scholar 

  3. Cavin, R.K., Bhattacharyya, S.P.: Robust and Well-Condicioned Eigenstructure Assignment via Sylvester’s Equation. Optimal Control Applications & Methods, Vol.4 (1983) 205-

    Article  MATH  MathSciNet  Google Scholar 

  4. Golub, G.H., Nash, S., Van Loan, C.F.: A Hessenberg-Schur Method for the Problem AX + XB = C. IEEE Trans. on Automatic Control, Vol. AC-24, 6 (1979) 909-

    Article  Google Scholar 

  5. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edition. John Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  6. Lancaster, P.: The Theory of Matrices. Academic-Press, New York (1969)

    Google Scholar 

  7. Laub, A.J.: NumericalLi near Algebra Aspects of Control design Computations. IEEE Trans. on Automatic Control, Vol. AC-30, 2 (1985) 97-

    Article  MathSciNet  Google Scholar 

  8. Lavenier, D., Quinton, P., Rajopadhye, S.: Advanced Systolic Design. DigitalS ystems Processing for Multimedia Systems, chapter 5. Parhi & Nishitani eds. (to appear)

    Google Scholar 

  9. Luenberger, D.G.: Time-Invariant descriptor Systems. Automatica, 14 (1978) 473-

    Article  MATH  Google Scholar 

  10. Martínez, G.: Algoritmos Sistólicos para la Resolución de Ecuaciones Matriciales Lineales en Sistemas de Control. Ph.D. Thesis, DSIC, Univ. Politécnica de Valencia, Valencia, Spain (1999)

    Google Scholar 

  11. Martínez, G., Fabregat, G., Hernández, V.: Une Librairie de Routines Systoliques. Proceedings of Renpar’ 11 (1999) 181–186.

    Google Scholar 

  12. Martínez, G., Fabregat, G., Hernández, V.: A Systolic Library for Solving Matrix Equations. Proceedings of the EUROMICRO’99 Conference (1999) 120–125.

    Google Scholar 

  13. Mehrmann, V.: The Autonomous Linear Quadratic ControlP roblem, Theory and Numerical Solutions. Springer-Verlag, Heidelberg (1991)

    Google Scholar 

  14. Navarro, J.J., Llabería, J.M., Valero, M.: Partitioning: an Essential Step in Mapping Algorithms into Systolic Array Processors. IEEE Computer, July (1987) 77-

    Google Scholar 

  15. Petkov, P.H., Christov, N.D., Konstantinov, M.M.: ComputationalMet hods for Linear Control Systems. Prentice-Hall, Hertfordshire (1991)

    Google Scholar 

  16. Quinton, P., Robert, Y.: Algorithmes et Architectures Systoliques. Masson (1989)

    Google Scholar 

  17. Sima, V.: Algorithms for Linear-Quadratic Optimization. Marcel Dekker Inc., New York (1996)

    MATH  Google Scholar 

  18. Van de Geijn, R.: Using PLAPACK: Parallel Linear Algebra Package. MITPRESS (1997), http://www.cs.utexas.edu/users/plapack

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez, G., Fabregat, G., Hernández, V. (2001). Solving the Generalized Sylvester Equation with a Systolic Library. In: Palma, J.M.L.M., Dongarra, J., Hernández, V. (eds) Vector and Parallel Processing — VECPAR 2000. VECPAR 2000. Lecture Notes in Computer Science, vol 1981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44942-6_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44942-6_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41999-0

  • Online ISBN: 978-3-540-44942-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics