Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Privacy Preservation Improvement by Learning Optimal Profile Generation Rate

  • Conference paper
  • First Online:
User Modeling 2003 (UM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2702))

Included in the following conference series:

Abstract

PRAW, a privacy model proposed recently, is aimed at protecting Web surfers’ privacy by hiding their interests, i.e., their profiles. PRAW generates several faked transactions for each real user’s transaction. The faked transactions relate to various fields of interest in order to confuse eavesdroppers attempting to derive users’ profiles. They provide eavesdroppers with inconsistent data for the profile generation task. PRAW creates two profiles, a real user profile and a faked one aimed at confusing eavesdroppers. In this paper we demonstrate that the number of user transactions used for user profile generation significantly affects PRAW’s ability to hide users’ interests. We claim that there exists an optimal profile update rate for every user according to his surfing behavior. A system implementing PRAW needs to learn, for each specific user, the user’s behavior, and dynamically adjust the optimal number of transactions that should be used to generate the user profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balabanovic’, M., and Shoham, Y. Fab: Content-Based, Collaborative Recommendation. Communications of the ACM 40(3), (1997) pp. 66–72.

    Article  Google Scholar 

  2. Benassi, P.: TRUSTe: An online privacy seal program. Communication of the ACM, 42(2) (1999) 56–59

    Article  Google Scholar 

  3. Claessens, J., Preneel, B., Vandewalle, J.: Solutions for anonymous communication on the Internet. Proceedings of the 1999 IEEE International Carnahan Conference on Security Technology 487 (1999) 298–303

    Google Scholar 

  4. Claypool, M., Le, P., Wased, M., Brown, D. Implicit Interest Indicators. Proceedings of IUI 2001 2001 International Conference on Intelligent User Interfaces (2001) 33–40.

    Google Scholar 

  5. Crossen, A., Budzik, J., Warner, M., Birnbaum, L., Hammond, K. J. XLibris: An Automated Library Research assistant. Proceedings of IUI 2001 2001 International Conference on Intelligent User Interfaces (2001) 49–53.

    Google Scholar 

  6. Elovici, Y., Shapira, B., Mashiach, A,: A New Privacy Model for Hiding Group Interests while Accessing the Web., In Proceedinsg of The ACM Workshop in Electronic Society, at The 9th ACM Conference on Computer and Communication Security, November 2002.

    Google Scholar 

  7. Elovici, Y., Shapira, B., Maschiach, A,: A New Privacy Model for Web Surfing. NGITS (2002) (Lecture Notes): 45–57

    Google Scholar 

  8. Goldschlag, D. M., Reed, M. G., Syverson, P. F.: Hiding Routing Information, Information Hiding, R. Anderson (editor), Springer-Verlag LLNCS 1174 (1996) 137–150

    Google Scholar 

  9. Hanani, U., Shapira, B. and Shoval, P. Information Filtering: Overview of issues, research and systems. User Modelling and User Adapted Interaction 11(3), (2001) 203–259.

    Article  MATH  Google Scholar 

  10. Grabber, E., Gibbons, P.B., Matias, Y., Mayer, A.: How to Make Personalized Web Browsing Simple, Secure, and Anonymous. Proceedings of Financial Cryptography (1997)

    Google Scholar 

  11. Lieberman, H., Autonomous Interface agents. Proceedings of the ACM Conference on Computers and Human Interfaces, CHI 97, Atlanta, Georgia (1997).

    Google Scholar 

  12. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions, ACM Transactions on Information and System Security, 1(1) (1998) 66–92

    Article  Google Scholar 

  13. Reiter, M.K., Rubin, A.D.: Anonymous Web Transactions with Crowds, Communications of the ACM 42(2) (1999) 32–38

    Article  Google Scholar 

  14. Syverson, P. F., Goldschlag, D. M., & Reed, M. G. (1997). Anonymous Connections and Onion Routing, Proceedings of the 18th Annual Symposium on Security and Privacy, IEEE CS Press, Oakland, CA, 44–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuflik, T., Shapira, B., Elovici, Y., Maschiach, A. (2003). Privacy Preservation Improvement by Learning Optimal Profile Generation Rate. In: Brusilovsky, P., Corbett, A., de Rosis, F. (eds) User Modeling 2003. UM 2003. Lecture Notes in Computer Science(), vol 2702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44963-9_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-44963-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40381-4

  • Online ISBN: 978-3-540-44963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics