Abstract
Let G=(V,E) be a connected graph with positive weights and n vertices. A subgraph G′ is a t-spanner if for all u, v∈V, the distance between u and v in the subgraph G′ is at most t times the corresponding distance in G. We show a O(nlogn)-time algorithm which, given a set V of n points in d-dimensional space, and any constant t>1, produces a t-spanner of the complete Euclidean graph of G. The produced spanner have O(n) edges, constant degree and weight O(wt(MST)).
Funded by NSF (CCR-940-9752) and Cadence Design Systems, Inc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: short, thin, and lanky. In Proc. ACM STOC’95, pages 489–498, 1995.
P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42:67–90, 1995.
D. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners and approximate shortest paths. In Proc. CCCG’96, pages 155–160, 1996.
G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners. Internat. J. Comput. Geom. Appl., 7(4):297–315, 1997.
J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete Euclidean graph. Discrete Comput. Geom., 7:13–28, 1992.
D. Mount. Personal communication, 1998.
F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.
S. B. Rao and W. D. Smith. Improved approximation schemes for traveling salesman tours. In Proc. ACM STOC’98, 1998.
J. S. Salowe. Construction of multidimensional spanner graphs with applications to minimum spanning trees. In Proc. ACM SoCG’91, pages 256–261, 1991.
M. Thorup. Undirected single-source shortest path with positive integer weights in linear time. J. ACM, 46(3):362–394, 1999.
P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K dimensions. Discrete Comput. Geom., 6:369–381, 1991.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gudmundsson, J., Levcopoulos, C., Narasimhan, G. (2000). Improved Greedy Algorithms for Constructing Sparse Geometric Spanners. In: Algorithm Theory - SWAT 2000. SWAT 2000. Lecture Notes in Computer Science, vol 1851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44985-X_28
Download citation
DOI: https://doi.org/10.1007/3-540-44985-X_28
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67690-4
Online ISBN: 978-3-540-44985-0
eBook Packages: Springer Book Archive