Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Least Adaptive Optimal Search with Unreliable Tests

  • Conference paper
  • First Online:
Algorithm Theory - SWAT 2000 (SWAT 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1851))

Included in the following conference series:

Abstract

We consider the basic problem of searching for an unknown m-bit number by asking the minimum possible number of yes-no questions, when up to a finite number e of the answers may be erroneous. In case the (i + 1)th question is adaptively asked after receiving the answer to the ith question, the problem was posed by Ulam and Rényi and is strictly related to Berlekamp’s theory of error correcting communication with noiseless feedback. Conversely, in the fully non-adaptive model when all questions are asked before knowing any answer, the problem amounts to finding a shortest e-error correcting code. Let q e(m) be the smallest integer q satisfying Berlekamp’s bound gse i=0 (q i)≤ 2 q- m. Then at least q e(m) questions are necessary, in the adaptive, as well as in the non-adaptive model. In the fully adaptive case, optimal searching strategies using exactly q e(m) questions always exist up to finitely many exceptional m’s. At the opposite non-adaptive case, searching strategies with exactly q e(m) questions—or equivalently, perfect e-error correcting codes with 2m codewords of length q e (m)— are rather the exception, already for e = 2, and do not exist for e > 2. In this paper we show that for any e > 1 and sufficiently large m, optimal—indeed, perfect— strategies do exist using a first batch of m non-adaptive questions and then, only depending on the answers to these m questions, a second batch of q e(m) - m non-adaptive questions. Since even in the fully adaptive case, q e(m) - 1 questions do not suffice to find the unknown number, and q e(m) questions generally do not suffice in the non-adaptive case, the results of our paper provide e-fault tolerant searching strategies with minimum adaptiveness and minimum number of tests.

Partially supported by ENEA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Adler and B. Maggs, Protocols for asymmetric communication channels, In: Proc. of 39th IEEE FOCS, (1998).

    Google Scholar 

  2. J. A. Aslam and A. Dhagat, Searching in the presence of linearly bounded errors, In: Proceedings of the 23rd ACM STOC (1991), 486–493.

    Google Scholar 

  3. M. Aigner, Combinatorial Search, Wiley-Teubner, New York-Stuttgart, 1988.

    MATH  Google Scholar 

  4. M. Aigner, Searching with lies, J. Comb. Theory,Ser. A, 74 (1995), 43–56.

    Article  MathSciNet  Google Scholar 

  5. R. S. Borgstrom and S. Rao Kosaraju, Comparison-based search in the presence of errors, In: Proceedings of the 25th ACM STOC (1993), 130–136.

    Google Scholar 

  6. E. R. Berlekamp, Block coding for the binary symmetric channel with noiseless, delayless feedback, In: Error-correcting Codes, H.B. Mann (Editor), Wiley, New York (1968), 61–88.

    Google Scholar 

  7. A. E. Brouwer, J. B. Shearer, N.J.A. Sloane, W. D. Smith, A New Table of Constant Weight Codes, IEEE Transaction on Information Theory, 36 (1990), 1334–1380.

    Article  MATH  Google Scholar 

  8. N. Cesa-Bianchi, Y. Freund, D. Helmbold, and M. K. Warmuth, On-line prediction and conversion strategies, Machine Learning, 25 (1996), 71–110.

    Google Scholar 

  9. F. Cicalese, U. Vaccaro, Optimal strategies against a liar, Theoretical Computer Science, 230 (2000), pp. 167–193.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Cicalese and D. Mundici, Optimal binary search with two unreliable tests and minimum adaptiveness, In: Proc. of ESA99, LNCS vol. 1643, (1999), 257–266.

    MathSciNet  Google Scholar 

  11. J. Czyzowicz, D. Mundici, A. Pelc, Ulam’s searching game with lies, J. Comb.Theo., Ser. A, 52 (1989), 62–76.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Dhagat, P. Gacs, and P. Winkler, On Playing “Twenty Question” with a liar, In: Proc. 3rd ACM-SIAM SODA (1992), 16–22.

    Google Scholar 

  13. D.Z. Du, F.K. Hwang, Combinatorial Group Testing and its Applications, World Scientific, Singapore, 1993.

    Google Scholar 

  14. R. Hill, Searching with lies, In: Surveys in Combinatorics, Cambridge Univ. Press (1995), 41–70.

    Google Scholar 

  15. R. Karp, ISIT’98 Plenary Lecture Report: Variations on the theme of ‘Twenty Questions’, IEEE Information Theory Society Newsletter, vol. 49, No.1, March 1999.

    Google Scholar 

  16. C. Kenyon and A. C. Yao, On Evaluating Boolean Functions with Unreliable Tests, International J. of Foundation of Computer Science, 1, (1990), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  17. F.J. Mac Williams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.

    MATH  Google Scholar 

  18. D. Mundici, Ulam’s Game, Łukasiewicz Logic and AF C-algebras, Fundamenta Informaticæ, 18, 151–161, 1993.

    MATH  MathSciNet  Google Scholar 

  19. D. Mundici, A. Trombetta, Optimal comparison strategies in Ulam’s searching game with two errors, Theoretical Computer Science, 182, (1997), 217–232.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Muthukrishnan, On optimal strategies for searching in presence of errors, In: Proc. of the 5th ACM-SIAM SODA (1994), 680–689.

    Google Scholar 

  21. A. Negro, M. Sereno, Ulam’s searching game with three lies, Adv. in Appl. Math., 13 (1992), 404–428.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Pelc, Solution of Ulam’s problem on searching with a lie, J. Combin. Theory, Ser. A, 44 (1987), 129–142.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Pelc, Searching with permanently faulty tests, Ars Combinatoria, 38 (1994), 65–76.

    Google Scholar 

  24. A. Rényi, Napló az információelméletrol, Gondolat, Budapest, 1976. (English translation: A Diary on Information Theory, J.Wiley and Sons, New York, 1984).

    Google Scholar 

  25. R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann, J. Spencer, Coping with errors in binary search procedures, Proc. of 10th ACM STOC (1978), 227–232.

    Google Scholar 

  26. J. Spencer, Ulam’s searching game with a fixed number of lies, Theoretical Comp. Sci., 95 (1992), 307–321.

    Article  MATH  Google Scholar 

  27. J. Spencer and P. Winkler, Three thresholds for a liar, Combinatorics, Prob. and Comp., 1 (1992), 81–93.

    MATH  MathSciNet  Google Scholar 

  28. A. Tietäväinen, On the nonexistence of perfect codes over finite fields, SIAM J. Appl. Math., 24, (1973), 88–96.

    Google Scholar 

  29. S.M. Ulam, Adventures of a Mathematician, Scribner’s, New York, 1976.

    MATH  Google Scholar 

  30. J. von Neumann, Probabilistic Logics and the Synthesis of reliable Organisms from Unreliable Components, in Automata Studies, Princeton University Press, Princeton, NJ, (1956), 43–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cicalese, F., Mundici, D., Vaccaro, U. (2000). Least Adaptive Optimal Search with Unreliable Tests. In: Algorithm Theory - SWAT 2000. SWAT 2000. Lecture Notes in Computer Science, vol 1851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44985-X_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-44985-X_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67690-4

  • Online ISBN: 978-3-540-44985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics