Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spatial Independent Component Analysis of Multitask-Related Activation in fMRI Data

  • Conference paper
  • First Online:
Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 (ICANN 2003, ICONIP 2003)

Abstract

Independent component analysis (ICA) is a technique to separate the mixed signal into independent components without priori assumptions about the hemodynamic response to the task. Spatial ICA (SICA) is applied widely in fMRI data because the spatial dimension of fMRI data is larger than their temporal dimension. The general linear model (GLM) is based on a priori knowledge about stimulation paradigm. In our study, a two-task cognitive experiment was designed, and SICA and GLM were applied to analyze these fMRI data. Both methods could easily find some common areas activated by two tasks. However, SICA could also find more accurate areas activated by different single task in specific brain areas than GLM. The results demonstrate that ICA methodology can supply us more information or the intrinsic structure of the data especially when multitask-related components are presented in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersen A.H., Gash D.M., Malcolm J.A. (1998) Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magn Reson Imaging 17: 795–815.

    Article  Google Scholar 

  2. Bell A.J., Sejnowski T.J. (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7:1129–1159.

    Article  Google Scholar 

  3. Biswal B.B, Ulmer J.L. (1999) Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J. Comput. Assist. Tomogr 23: 265–271

    Article  Google Scholar 

  4. Calhoun V. D., Adali T., Pearlson G.D., and Pekar J.J. (2001) Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp 13: 43–53.

    Article  Google Scholar 

  5. Chad H. M., Victor M. H., Dietmar C., Michelle Q., and M. E. M. (2000) Whole-brain functional MR imaging activation from a finger-typing task examined with independent component analysis. AJNR Am J Neuroradiol 21: 1629–1635.

    Google Scholar 

  6. Esposito F., Formisano E., Seifritz E., Goebel R., Morrone R., Tedeschi G., and Francesco D.S. (2002) Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Hum. Brain Mapp. 16: 146–157.

    Article  Google Scholar 

  7. Friston, K. J. (1996) Statistical parametric mapping and other analyses of functional imaging data. Brain Mapping: The Methods (Toga A.W. and Mazziotta J.C., Eds.) [C]. San Diego: Academic Press, 363–396.

    Google Scholar 

  8. Hyvärinen A. (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Networks 10: 626–634.

    Article  Google Scholar 

  9. Hong Gu, Wolfgang Engelien, Hanhua Feng, David A. Silbersweig, Emily Stern, Yihong Yang. (2001) Mapping transient, randomly occurring neuropsychological events using independent component analysis. NeuroImage 14: 1432–1433.

    Article  Google Scholar 

  10. Makeig S., Jung T.P., Bell A.J., Ghahremani D., Sejnowski T.J. (1997) Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA 94: 10979–10984.

    Article  Google Scholar 

  11. Mckeown M. J., Makeig S., Brown G.G., Jung T.-P., Kindermann S. S., Bell A. J., and Sejnowski T. J. (1998a) Analysis of fMRI data by separation into independent spatial components. Hum. Brain Mapp. 6: 160–188.

    Article  Google Scholar 

  12. Mckewon M. J., Jung T.-P., Makeig S., Brown G., Kindermann S. S., Lee, T.-W., and Sejnowski T. J. (1998b) Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proc. Natl. Acad. Sci. USA 95: 803–810.

    Article  Google Scholar 

  13. Meckeown M. J. (2000) Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. NeuroImage 11: 24–35.

    Article  Google Scholar 

  14. Ogawa S., Tank D.W., Menon R., Ellermann J.M., Kim S.G., Merkle H., and Ugurbil K. (1992) Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 89: 5951–5955.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Long, Zy. et al. (2003). Spatial Independent Component Analysis of Multitask-Related Activation in fMRI Data. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds) Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. ICANN ICONIP 2003 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44989-2_61

Download citation

  • DOI: https://doi.org/10.1007/3-540-44989-2_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40408-8

  • Online ISBN: 978-3-540-44989-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics