Abstract
We show that a set of uniformly width-bounded infinite series-parallel pomsets is ω-series-rational iff it is axiomatizable in monadic second order logic iff it is ω-recognizable. This extends recent work by Lodaya and Weil on sets of finite series-parallel pomsets in two aspects: It relates their notion of series-rationality to logical concepts, and it generalizes the equivalence of recognizability and series-rationality to infinite series-parallel pomsets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
S.L. Bloom and Z. Esik. Shuffle binoids. Theoretical Informatics and Applications, 32:175–198, 1998.
B. Courcelle. The monadic second-order logic of graphs. I: Recognizable sets of finite graphs. Information and Computation, 85:12–75, 1990.
V. Diekert and A. Muscholl. Deterministic asynchronous automata for infinite traces. Acta Informatica, 31:379–397, 1994.
V. Diekert and G. Rozenberg. The Book of Traces. World Scientific Publ. Co., 1995.
M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata for pomsets. Theoretical Comp. Science, 1999. To appear.
W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical Comp. Science, 154:67–84, 1996.
Z. Esik and S. Okawa. Series and parallel operations on pomsets. In Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Comp. Science vol. 1738. Springer, 1999.
P. Gastin and A. Petit. Infinite traces. In [4], pages 393–486. 1995.
P. Gastin, A. Petit, and W. Zielonka. An extension of Kleene’s and Ochmanski’s theorems to infinite traces. Theoretical Comp. Science, 125:167–204, 1994.
J.L Gischer. The equational theory of pomsets. Theoretical Comp. Science, 61:199–224, 1988.
J. Grabowski. On partial languages. Ann. Soc. Math.Pol. IV: Fund. Math., 4(2):427–498, 1981.
H.J. Hoogeboom and G. Rozenberg. Dependence graphs. In [4], pages 43–67. 1995.
D. Lapoire. Recognizability equals monadic second order definability, for sets of graphs of bounded tree width. In STACS’98, Lecture Notes in Comp. Science vol. 1373, pages 618–628. Springer, 1998.
K. Lodaya and P. Weil. A Kleene iteration for parallelism. In V. Arvind and R. Ramanujam, editors, FST and TCS 98, Lecture Nodes in Computer Science vol. 1530, pages 355–366. Springer, 1998.
K. Lodaya and P. Weil. Series-parallel posets: algebra, automata and languages. In M. Morvan, Ch. Meinel, and D. Krob, editors, STACS98, Lecture Nodes in Computer Science vol. 1373, pages 555–565. Springer, 1998.
K. Lodaya and P. Weil. Series-parallel languages and the bounded-width property. Theoretical Comp. Science, 1999. to appear.
D. Perrin and J.-E. Pin. Mots Infinis. Tech. Rep. LITP 93.40, Université Paris 7 (France), 1993. Book to appear.
V. Pratt. Modelling concurrency with partial orders. Int. J. of Parallel Programming, 15:33–71, 1986.
F.P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30:264–286, 1930.
M. Takahashi. The greatest fixed-points and rational omega-tree languages. Theoretical Comp. Science, 44:259–274, 1986.
W. Thomas. On logical definability of trace languages. In V. Diekert, editor, Proc. of the workshop Algebraic Methods in Computer Science, Kochel am See, FRG, pages 172–182, 1990. Report TUM-I9002, TU Munich.
W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O.-Informatique Théorique et Applications, 21:99–135, 1987.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuske, D. (2000). Infinite Series-Parallel Posets: Logic and Languages. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds) Automata, Languages and Programming. ICALP 2000. Lecture Notes in Computer Science, vol 1853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45022-X_55
Download citation
DOI: https://doi.org/10.1007/3-540-45022-X_55
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67715-4
Online ISBN: 978-3-540-45022-1
eBook Packages: Springer Book Archive