Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Infinite Series-Parallel Posets: Logic and Languages

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1853))

Included in the following conference series:

  • 1286 Accesses

Abstract

We show that a set of uniformly width-bounded infinite series-parallel pomsets is ω-series-rational iff it is axiomatizable in monadic second order logic iff it is ω-recognizable. This extends recent work by Lodaya and Weil on sets of finite series-parallel pomsets in two aspects: It relates their notion of series-rationality to logical concepts, and it generalizes the equivalence of recognizability and series-rationality to infinite series-parallel pomsets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.L. Bloom and Z. Esik. Shuffle binoids. Theoretical Informatics and Applications, 32:175–198, 1998.

    MathSciNet  Google Scholar 

  2. B. Courcelle. The monadic second-order logic of graphs. I: Recognizable sets of finite graphs. Information and Computation, 85:12–75, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Diekert and A. Muscholl. Deterministic asynchronous automata for infinite traces. Acta Informatica, 31:379–397, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Diekert and G. Rozenberg. The Book of Traces. World Scientific Publ. Co., 1995.

    Google Scholar 

  5. M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata for pomsets. Theoretical Comp. Science, 1999. To appear.

    Google Scholar 

  6. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical Comp. Science, 154:67–84, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. Z. Esik and S. Okawa. Series and parallel operations on pomsets. In Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Comp. Science vol. 1738. Springer, 1999.

    Google Scholar 

  8. P. Gastin and A. Petit. Infinite traces. In [4], pages 393–486. 1995.

    Google Scholar 

  9. P. Gastin, A. Petit, and W. Zielonka. An extension of Kleene’s and Ochmanski’s theorems to infinite traces. Theoretical Comp. Science, 125:167–204, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.L Gischer. The equational theory of pomsets. Theoretical Comp. Science, 61:199–224, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Grabowski. On partial languages. Ann. Soc. Math.Pol. IV: Fund. Math., 4(2):427–498, 1981.

    MATH  MathSciNet  Google Scholar 

  12. H.J. Hoogeboom and G. Rozenberg. Dependence graphs. In [4], pages 43–67. 1995.

    Google Scholar 

  13. D. Lapoire. Recognizability equals monadic second order definability, for sets of graphs of bounded tree width. In STACS’98, Lecture Notes in Comp. Science vol. 1373, pages 618–628. Springer, 1998.

    Google Scholar 

  14. K. Lodaya and P. Weil. A Kleene iteration for parallelism. In V. Arvind and R. Ramanujam, editors, FST and TCS 98, Lecture Nodes in Computer Science vol. 1530, pages 355–366. Springer, 1998.

    Google Scholar 

  15. K. Lodaya and P. Weil. Series-parallel posets: algebra, automata and languages. In M. Morvan, Ch. Meinel, and D. Krob, editors, STACS98, Lecture Nodes in Computer Science vol. 1373, pages 555–565. Springer, 1998.

    Google Scholar 

  16. K. Lodaya and P. Weil. Series-parallel languages and the bounded-width property. Theoretical Comp. Science, 1999. to appear.

    Google Scholar 

  17. D. Perrin and J.-E. Pin. Mots Infinis. Tech. Rep. LITP 93.40, Université Paris 7 (France), 1993. Book to appear.

    Google Scholar 

  18. V. Pratt. Modelling concurrency with partial orders. Int. J. of Parallel Programming, 15:33–71, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  19. F.P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30:264–286, 1930.

    Article  Google Scholar 

  20. M. Takahashi. The greatest fixed-points and rational omega-tree languages. Theoretical Comp. Science, 44:259–274, 1986.

    Article  MATH  Google Scholar 

  21. W. Thomas. On logical definability of trace languages. In V. Diekert, editor, Proc. of the workshop Algebraic Methods in Computer Science, Kochel am See, FRG, pages 172–182, 1990. Report TUM-I9002, TU Munich.

    Google Scholar 

  22. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O.-Informatique Théorique et Applications, 21:99–135, 1987.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuske, D. (2000). Infinite Series-Parallel Posets: Logic and Languages. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds) Automata, Languages and Programming. ICALP 2000. Lecture Notes in Computer Science, vol 1853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45022-X_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-45022-X_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67715-4

  • Online ISBN: 978-3-540-45022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics