Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Conversation Mining in Multi-agent Systems

  • Conference paper
  • First Online:
Multi-Agent Systems and Applications III (CEEMAS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2691))

Abstract

The complexity of Multi-Agent Systems is constantly increasing. With the growth of the number of agents, interactions between them draw complexan d huge conversations, i.e. sequences of messages exchanged inside the system. In this paper, we present a knowledge discovery process, mining those conversations to infer their underlying models, using stochastic grammatical inference techniques. We present some experiments that show the process we design is a good candidate to observe the interactions between the agents and infer the conversation models they build together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.H. Bui, S. Venkatesh, and D. H. Kieronska. Learning other agents’ preferences in multi-agent negotiation using the bayesian classifier. IJCIS, pages 275–294, 8 1999.

    Google Scholar 

  2. C. Carabelea. Adaptive agents in argument-based negociation. In I.V. Marik, O. Stepankova, H. Krautwurmova, and M. Luck, editors, Multi-Agent Systems and Application II, Selected Revised Papers: 9th ECCAI-ACAI/EASSS 2001, AEMAS 2001, HoloMAS 2001., volume LNAI 2322, pages 176–183. Springer Verlag, 2001.

    Google Scholar 

  3. D. Carmel and S. Markovitch. Exploration strategies for model-based learning in multi-agent systems: Exploration strategies. Autonomous Agents and Multi-Agent Systems, 2(2):141–172, 1999.

    Article  Google Scholar 

  4. R.C. Carrasco and J. Oncina. Learning deterministic regular grammars from stochastic samples in polynomial time. RAIRO (Theoretical Informatics and Applications), 33(1):1–20, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.E. Cook and A. L. Wolf. Discovering models of software processes from event-based data. ACM Transactions on Software Engineering and Methodology, 7(3):215–249, July 1998.

    Article  Google Scholar 

  6. U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery in databases. AI Magazine, 17(3):37–54, 1996.

    Google Scholar 

  7. E. Gold. Language identification in the limit. Information and Control, 10, 1967.

    Google Scholar 

  8. JADE. Java agent development framework, 2002.

    Google Scholar 

  9. G. Kaminka, D. Pynadath, and M. Tambe. Monitoring teams by overhearing: A multi-agent plan-recognition approach. In Journal of Artificial Intelligence Research, To appear, 2002.

    Google Scholar 

  10. C. Kermorvant and C. de la Higuera. Learning languages with help. In Proceedings of 6th International Conference on Grammatical Inference, Amsterdam, the Netherlands, 2002.

    Google Scholar 

  11. H. Mazouzi, A.E. Fallah, and S. Haddad. Open protocol design for complex interactions in multi-agent systems. In C. Castelfranchi and W. L. Johnson, editors, Autonomous Agents & Multi-Agent Systems, pages 517–526. ACM Press, 2002.

    Google Scholar 

  12. J. Oncina and P. García. Inferring regular languages in polynomial update time, volume 1 of Machine Perception and Artificial Intelligence, pages 49–61. World Scientific, 1992.

    Article  Google Scholar 

  13. F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic DFA inference using Kullback-Leibler divergence and minimality. In Proc. 17th International Conf. on Machine Learning, pages 975–982. Morgan Kaufmann, San Francisco, CA, 2000.

    Google Scholar 

  14. S. Willmot, M. Calisti, and E. Rollon. Challenges in large-scale open agent mediated economie. In Proceedings of Workshop on Agent MediatedElectronic Commerce, July 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mounier, A., Boissier, O., Jacquenet, F. (2003). Conversation Mining in Multi-agent Systems. In: Mařík, V., Pěchouček, M., Müller, J. (eds) Multi-Agent Systems and Applications III. CEEMAS 2003. Lecture Notes in Computer Science(), vol 2691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45023-8_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45023-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40450-7

  • Online ISBN: 978-3-540-45023-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics